Creation of a Pixel Pipeline and The Need for Image Analysis To Improve Workflow and Increase Adoption of Digital Pathology for Clinical Use
Andrew J. Evans

Disclosure of Relevant Financial Relationships
USCAP requires that all planners (Education Committee) in a position to influence or control the content of CME disclose any relevant financial relationship WITH COMMERCIAL INTERESTS which they or their spouse/partner have, or have had, within the past 12 months, which relates to the content of this educational activity and creates a conflict of interest.

Disclosure of Relevant Financial Relationships
Dr. Evans declares he has no conflict(s) of interest to disclose.

Overview
- WSI telepathology at University Health Network
 - how we started
 - how we have expanded our use of the technology - based on whole slide imaging (WSI)
 - enabling sub-specialty pathology
- How image analysis would benefit a department in which WSI has been used for diagnostic work since 2006.

Do UHN pathologists still use microscopes?
- Yes
 - 80% is done with glass slides and a microscope
 - 20% of my service work is done by WSI
- WSI is used for clinical purposes on a regular basis by less than half of UHN pathologists
 - new applications are slowly coming online
- We are living the adoption challenges!
Value Proposition of Telepathology at UHN

- Full departmental consolidation at TGH in early 2006
- No regular on-site pathologist at TWH as of 2004

TWH Frozen Sections: Challenges
- Single pathologist traveling from TGH to TWH
- Inefficient - traveling and waiting
- Disruptive to regular workflow at TGH
- Delays in regular sign-out affecting other UHN patients
- No consultation on difficult cases
- Potential to affect TWH surgical patients

Facilitating Multi-Site Sub-Specialty Pathology
- Move slides?
- Move pathologists?
- Telepathology?
- Expanding list of clinical applications at UHN:
 - Frozen sections (2004-present)
 - Consultation - local and international
 - Supporting transplant pathology programs
 - Quality assurance
 - Primary diagnosis (2012 - present)

TWH Robotic System: November 2004-October 2006
- 350 frozen sections
- Slow (~10 minutes/slide)

TWH Whole-Slide Imaging: October 2006-Present
- >4000 frozen sections/3500 patients
- >90% from neurosurgery
- 0-2% discrepancy rate
- 14-16 minute total turnaround time
- <1-5% deferral rate
- 2 pathologists review all deferrals

Intra-Operative Consultations: Work Flow for Single Block Frozen Sections
- 10-12 minutes
- 1-3 minutes
Why Has This Worked at UHN?

- Started with a single clearly-defined application
 - neurosurgical frozen sections
- Uncomplicated frozen section work flow
- Long development period with due diligence
 - 18 months from initial meetings to go-live
 - time to build confidence and trust
- Implementation team
- Standard Operating Procedure (SOP)

Image Quality: The Importance of Good Histology

Poor slides = Poor image quality

20x scans – ask for 40x when necessary

Episodes of Mid-Case System Failure

- 11 episodes (0.2% of cases to date) requiring a pathologist to go to TWH
 - Small pale pieces of tissue (x2)
 - Excess mounting media (x1)
 - Burned out light bulb (x1)
 - Calibration errors (x5)
 - faded H&E test slides
 - aging light bulb

System Failure: Plan B

- Pathologist informs surgeon and goes to TWH if issue not resolved in 5 minutes
- A second pathologist works with the TWH histotechnologist in case the issue is resolved.

Frozen Section Telepathology: Remote Sites
Timmins and District Hospital (TADH)

- General community hospital
- > 10,000 surgical pathology accessions/year
- UHN assumed medical leadership of TADH labs in 2006
- Pathologist staffing
 - 1 on-site at any given time
 - 1 week per month – no on-site pathologist
 - 150 frozen sections per year
 - Tissue identification/intra-operative staging

Kingston General Hospital (Queen’s University)

- Academic pathology department
- Neuropathology frozen sections (1-5 per week)
- 1 staff neuropathologist to cover all frozen sections
- Need for back-up during vacation, CME leave, etc
- UHN pathologists given limited consulting privileges
 - remote access to EPR/diagnostic imaging
 - remote access to KGH LIS

Transplant Telepathology at UHN

- Orthotopic liver transplant program
- ~ 600 post-transplant biopsies/year
 - 2 – 5 urgent biopsies/week (same day or next morning results)

Practical Issues:
- 2 liver pathologists
- Both can be off-site at once - annual USCAP meeting
- Need for continuity of highly-specialized reporting

Primary Diagnosis By WSI

- First diagnosis made on scanned slide images (H&E, special stains/immunohistochemistry)
- Diagnostic information becomes part of the patient record
- Treatment decisions to be made based on this information

Digital Pathology Guidelines

- American Telemedicine Association (2014)
- Royal College of Pathologists in Britain (2013)
- Canadian Association of Pathologists (2013)
- College of American Pathologists WSI Validation (2013)
- Others (Japan 2005)

Self-Validation Studies: What is Learned?

- WSI can be used for making accurate and complete diagnoses
- What needs to be optimized in the histopathology laboratory to facilitate digital sign out
- Limitations
 - cases that require re-scanning
 - cases to scan at 40X
 - cases requiring deferral to glass slide review
 - 5%
Image Analysis and Adoption of Digital Pathology

3/22/2017

5

Image Analysis and Adoption of Digital Pathology

Primary Diagnosis Telepathology
(Live as of November 2012)

• regional cancer center
• 25,000 surgical cases per year
• 300-400 slides per day sent to UHN

WSI is an enabler:
1. Cost
2. Delayed TAT
3. Risks
 • lost/broken slides

Primary Diagnosis Telepathology
(October 2012 - present)

• 9,700 cases (52,000 slides) scanned for primary diagnosis

Phased Implementation Strategy

• Start with most experienced users
 • GU, endocrine, liver, head and neck
 • placentas, miscellaneous orthopaedic cases
• Attempt to scan all cases for these groups
• Review digital slides and sign out
 • request glass slides whenever it is required to sign out a given case

Secure
Private
Network
Central
Server
Local
Server
UHN
Data Center
Pathologist
Routine scanning at 20x

WSI: Primary Diagnosis

• October 2012 - present
• 9,700 cases (52,000 slides) scanned for primary diagnosis

Spectrum of GU Cases

<table>
<thead>
<tr>
<th>Category</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vas Deferens</td>
<td>270</td>
<td>320</td>
<td>590</td>
<td>1305</td>
</tr>
<tr>
<td>Penetration</td>
<td>12</td>
<td>21</td>
<td>33</td>
<td>88</td>
</tr>
<tr>
<td>Hydrocele</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Partial Penectomy</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Ureter</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>UPJ</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Ureter biopsy</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>Ureterectomy</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Testes</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Bsy for fertility</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Hydrocele Sac</td>
<td>12</td>
<td>14</td>
<td>26</td>
<td>41</td>
</tr>
<tr>
<td>Lipoma Cord</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Radical Orchiectomy</td>
<td>7</td>
<td>13</td>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>Scrotum</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Prostate needle biopsy</td>
<td>1</td>
<td>61</td>
<td>126</td>
<td>188</td>
</tr>
<tr>
<td>Radical Prostatectomy</td>
<td>8</td>
<td>5</td>
<td>13</td>
<td>338</td>
</tr>
<tr>
<td>TURP</td>
<td>59</td>
<td>70</td>
<td>129</td>
<td>393</td>
</tr>
<tr>
<td>Kidney biopsy</td>
<td>23</td>
<td>35</td>
<td>58</td>
<td>108</td>
</tr>
<tr>
<td>Nephroureterectomy</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td>33</td>
</tr>
<tr>
<td>Partial Nephrectomy</td>
<td>5</td>
<td>15</td>
<td>20</td>
<td>57</td>
</tr>
<tr>
<td>Radical Nephrectomy</td>
<td>16</td>
<td>19</td>
<td>35</td>
<td>264</td>
</tr>
<tr>
<td>Hernia Sac</td>
<td>36</td>
<td>53</td>
<td>89</td>
<td>130</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>12</td>
<td>24</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>Grand Total</td>
<td>3</td>
<td>725</td>
<td>1036</td>
<td>1764</td>
</tr>
</tbody>
</table>
Deferral to Glass Slides: 5-10% of Cases

- **Difficult or unusual cases** especially where there is a high likelihood a case will be sent out for glass slide review by another pathologist.
- "It's slower than glass and I'm too busy" - if the pathologist has a large volume of cases to report.
- Performing diagnostic activities that are currently difficult or cannot be performed using WSI:
 - counting mitoses per high power field basis
 - identifying micro calcifications on breast biopsies by polarized light microscopy
- **Suboptimal image quality** in an area of potential diagnostic importance - a minor reason for deferral.

Example of a Case Deferred to Glass

47 year-old male, 6 cm right inguinal mass, "lipoma"

Growing Pains So Far

1. IT infrastructure/bandwidth
2. Viewer stability and reduced viewing speeds
3. Scanner issues
4. WSI-LIS interface and barcode issues
 - all cases are primarily accessed via the LIS
 - no flexibility for organizing electronic worklists
5. Mixed glass slide-WSI workflow

Hybrid Glass Slide - WSI Workflow

- Worrisome cellularity with mitoses (some atypical)
- Spindle cell lipoma/mammary-type myofibroblastoma
- De-differentiated liposarcoma
- Required IHC and molecular work-up (MDM2 FISH) not available at Lakeridge Health Oshawa

Summary of Clinical Use of WSI at UHN

- We have used computer screens the same way we use microscopes:
 - visual interpretation of H&E morphology
 - visual interpretation of immunohistochemistry
- Our WSI system works for those who use it - improvements on several fronts are needed to increase adoption
- Enter the need for a "pixel pipeline" with image analysis!
Image Analysis and Adoption of Digital Pathology

Pixel Pipelines

- Graphics card components that process pixel information to accelerate image processing tasks.
- Sequence of steps from digitizing a slide to final diagnosis with complete and robust prognostic information
- Doing what human eyes cannot do with WSI, glass slides or a microscope
 - "It's slower than glass and I'm too busy"
 - "Digital pathology is the future of pathology - and always will be"

Image Analysis: Software Tools To Help Pathologists (Not Replace Us)

- Intended goals:
 - allow the pathologist to act as the final interpreter
 - not field selection technologist
 - more robust biomarker quantitation
 - oncologists and patients like reports with hard numbers
- Use cases we have discussed at UHN

Ki-67/MIB-1

- Clinical Applications
 - neuroendocrine tumors
 - neuropathology - adjunct for grading gliomas and meningiomas
 - lymphoma
- Translational Research Applications
 - breast cancer - additional prognostic information over grading?
 - prostate cancer - active surveillance patient selection?

Ki-67 Labeling Index

- Visual inspection/ hot-spot detection
 - time consuming and error prone

Mitotic Figure Counting: H&E

- Potential confounders for visual counting:
 - thick sections
 - over-staining
 - apoptotic bodies
Multiplex Immunofluorescence

- Biopsy with limited lesional tissue
- Requires an immunohistochemistry panel (5-10 stains)
- Lesional tissue is exhausted from the block
- Can the panel be run on one single paraffin section?
 - hyperplexing (60 or more markers)

Pathologist Time & Motion Study: Glass Slide Review (Stratman et al)

- Concept of “pCAD”
 - Automated, systematic slide review, pre-annotated slides
 - Construct a report as slides are reviewed
 - Reduce the time spent on non-diagnostic work
Need for adequately-powered training sets (large number of exemplars)
- Machine learning with iterative improvement

How To Make The Pixel Pipeline a Reality

- Do it yourself (?)
- Partner with companies who focus on:
 - streamlining workflow in digital pathology - complete digitization
 - dependable IT support - continuous system monitoring
 - managing large volumes of digital data
 - development of clinically relevant algorithms
 - creative business models

Summary

- WSI telepathology at University Health Network
 - enabling sub-specialty pathology
 - how we started
 - how we have expanded our use of the technology
- How image analysis would help pathologists who have been using WSI for diagnostic work since 2006.

Acknowledgements

- Pathologists
 - Dr. Sylvia Asa - vision of bringing telepathology to UHN
 - Colleagues who worked to move digital pathology forward
- UHN Histotechnologists, Lab Management, LIS and IT Support
 - Michele Henry
 - Peter Woo
 - Dr. Zoya Volynskaya
 - Celcilia Lagmay-Traya
- Lakeridge Health Oshawa Staff
 - Alan Wolff

THANK YOU