MORPHOLOGY AND MOLECULAR TESTING IN NON-SMALL CELL CARCINOMA OF LUNG NEW FRONTIER IN CYTOPATHOLOGY PRACTICE

American Society for Cytopathology
San Antonio, Texas
Sunday March 5, 2017

William D. Travis, M.D.
Attending Thoracic Pathologist
Memorial Sloan Kettering Cancer Center
New York, NY

Disclosure of Relevant Financial Relationships

USCAP requires that all planners (Education Committee) in a position to influence or control the content of CME disclose any relevant financial relationship WITH COMMERCIAL INTERESTS which they or their spouse/partner have, or have had, within the past 12 months, which relates to the content of this educational activity and creates a conflict of interest. Dr. Travis has nothing to disclose.

NON-SMALL CELL LUNG CANCER: 70% PRESENT IN ADVANCED STAGE

http://whobuebooks.iarc.fr/

2015 Classification: Impact on Management of Advanced Lung Cancer Patients

- Criteria/terminology for small bx/cytology
- More accurate histologic subtyping
- Strategic management of small tissues
- Streamlining workflow for molecular testing
- Need for local multidisciplinary team

THERAPEUTIC ADVANCES IMPACTED NEED FOR MORE ACCURATE HISTOLOGIC DIAGNOSIS AND MOLECULAR TESTING

- Predictive of response
 - EGFR mutation (adenoca) – TKI’s
 - Adenoca or NSCC-NOS – pemetrexed
 - ALK fusion (adenoca)- crizotinib
- Predictive of toxicity
 - Bevacizumab – contraindicated in life-threatening hemorrhage in squamous carcinoma
CLASSIFICATION OF LUNG CANCER NOW REQUIRES GENETIC TESTING

- EGFR
- ALK fusions
- BRAF V600E
- ROS1 fusions
- RET fusions
- MET splice site Exon 14 mutations

TARGETABLE GENETIC CHANGES IN SQUAMOUS CELL CARCINOMA

- PTEN
- FGFR1 AMP
- PIK3CA
- AKT1
- Unknown (34%)

Evolution of molecular testing of lung adenocarcinomas at MSKCC

- EGFR only
- Sequenom MassARRAY™
- PCR-based for Exon 19 Δ, Exon 21 mutations
- Sanger Sequencing

- Next-generation sequencing
- MSK-IMPACT™

- Integrated Mutation Profiling of Actionable Cancer Targets
- Sequenom MassARRAY™
- Exon 19 Δ, ALK FISH
- EGFR Exon 19 Δ
- ALK FISH
- RET FISH
- ROS1 FISH

Initial Therapy of Advanced Adenoca or NSCLC-NOS

- Adenocarcinoma
- Large cell ca
- NSCLC-NOS

- EGFR Mutations
- Pos ALK fusion
- Neg ALK fusion
- Unknown EGFR Mutation & ALK Status

- Erlotinib/Gefitinib
- Cisplatin
- Bevacizumab
- Crizotinib
- Pemetrexed
- Cabozantinib
- Claplatin
Initial Therapy of Advanced Adenocarcina or NSCLC-NOS

- Adenocarcina
 - EGFR Mutation
 - Exon 19 del
 - Exon 21 L858R, L861X
 - Exon 18 G719A/S
 - Neg EGFR mut
 - Pos ALK fusion
 - Neg EGFR mut
 - Neg ALK fusion
 - Unknown EGFR Mutation & ALK Status
 - Erlotinib/Gefitinib
 - Crizotinib
 - Pemetrexed
 - Bevacizumb
 - Cisplatin

LUNG ADENOCARCINOMA

CLASSIFICATION IN SMALL BIOPSY AND CYTOLOGY SPECIMENS

Because this was never addressed by WHO, by necessity other histologies needed to be addressed

SMALL BIOPSY/CYTOLOGY LUNG CANCER DIAGNOSIS: IN USA OVER 132,000 CASES IN 2017

- 2017: ACS estimates for USA:
 - 222,500 Lung Cancers
 - 85% NSCLC = 189,125 (15% SCLC)
- 70% Advanced Stage = 132,388
 - Unresectable: Diagnosed by small biopsies/cytology

PHASE III STUDY COMPARING CISPLATIN PLUS GEMCITABINE WITH CISPLATIN & PEMETREXED IN ADVANCED NSCLC

PSEUDOSQUAMOUS SOLID ADENOCARCINOMA

- TTF-1
- Mucicarmine

- IN THIS STUDY APPROXIMATELY 20% OF CASES REPRESENT NSCLC-NOS

- EGFR Exon 19 Deletion

Modified from Mark Kris, Thoracic Oncology, MSKCC
Pseudokeratinizing Adenocarcinoma

- TTF-1
- p40

2015 WHO Terminology for Small Biopsies and Cytology

<table>
<thead>
<tr>
<th>2015 WHO Resections</th>
<th>Small Biops/Cytology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma</td>
<td>Morphologic adenocarcinoma patterns clearly present: Adenocarcinoma, describe identifiable patterns present</td>
</tr>
<tr>
<td>Acinar</td>
<td></td>
</tr>
<tr>
<td>Micropapillary</td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td></td>
</tr>
<tr>
<td>No 2004 WHO counterpart – Most will be solid adenocarcinomas</td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>Morphologic squamous cell patterns not present (supported by special stains; i.e. TTF-1 +; p40 -): Non-small cell carcinoma, favor adenocarcinoma</td>
</tr>
<tr>
<td>Keratinizing</td>
<td>Squamous cell carcinoma</td>
</tr>
<tr>
<td>Nonkeratinizing</td>
<td></td>
</tr>
<tr>
<td>Basaloid</td>
<td></td>
</tr>
<tr>
<td>No 2004 WHO counterpart</td>
<td>Morphologic squamous cell patterns not present (supported by special stains; i.e. p40 +; TTF-1 -): Non-small cell carcinoma, favor squamous cell carcinoma</td>
</tr>
<tr>
<td>Large cell carcinoma</td>
<td>Non-small cell carcinoma, not otherwise specified (NOS)</td>
</tr>
</tbody>
</table>

2015 WHO Classification

- Non-small cell carcinoma, favor squamous cell carcinoma
- Non-small cell carcinoma, favor adenocarcinoma

Immunohistochemical Markers

- **Adenocarcinoma (One Marker)**
 - TTF-1 (best), Napsin, PE-10
- **Squamous Carcinoma (One Marker)**
 - p40 (best), p63, CK5/6, 34βE12
 - Desmocollin-3 (need more testing)
- Cocktails – nuclear/cytoplasmic antibodies
 - Adenoc – TTF-1/Napsin
 - Squamous – p63/CK5/6

NSCLC Diagnosed by Light Microscopy in Small Biopsies/Cytology

- Squamous cell carcinoma: 20-30%
- NSCLC-NOS: 20-40%
- Adenocarcinoma: 40-50%

- Historically NSCLC-NOS has been encouraged because there was no reason to classify these tumors further.
- As a result 20-40% of NSCLC in small biopsies/cytology are currently being diagnosed as NSCLC-NOS.
IMMUNOHISTOCHEMISTRY FOR MUTATION/FUSION SPECIFIC ANTIBODIES

- ALK
- EGFR
 - EGFR L858R
 - EGFR E746
- ROS1

ALK Rearranged Adenocarcinoma

- ALK IHC (D5F3)
- ALK FISH

EGFR EXON 21 L858R MUTATION SPECIFIC AB

EGFR EXON 19 DELETION MUTATION SPECIFIC AB

EGFR MUTATION SPECIFIC ANTIBODIES

- Exon 19 deletion
 - All 20 cases with 15-bp deletion were MS Ab positive (sensitivity 100%, specificity 99%)
 - 35 other than the common 15bp deletion – 49% stained positively (sensitivity 74%)
- EGFR L858R mutation
 - 17/18 cases were positive with MS Ab (sensitivity 95%, specificity 99%); better if use 2+/3+ for positive

NSCLC – FAVOR ADENOCARCINOMA TOUCH PREP CYTOLOGY

CYTOLOGY IS A POWERFUL TOOL FOR CLASSIFYING NSCLC

Suitability of Thoracic Cytology for New Therapeutic Paradigms in Non-Small Cell Lung Carcinoma

High Accuracy of Tumor Subtyping and Feasibility of EGFR and KRAS Molecular Testing

Nastasia Rothman, MD, PhD,* Suzanne M. Brandt, MD,* Carrie S. Sigel, MD,* Marie A. Freivalskaya, MPA, CT (ASCP), PT; Gregory J. Boyle, MD, PhD; J. William D. Travis, MD,* Maseena F. Zafar, MD,* and Andrei L. Moreira, MD, PhD*

J Thoracic Oncol 6:451-8, 2011

INVASIVE MUCINOUS ADENOCARCINOMA CYTOLOGY DRUNKEN HONEYCOMBING

TISSUE MANAGEMENT

- Each group of thoracic physicians (clinicians, radiologists, surgeons, pathologists, molecular biologists) must develop a strategy to manage tissues
- Obtaining biopsies or cytology samples
- Optimal processing by laboratories/pathologists for diagnosis AND molecular studies
- Pathologists should be the leader of this
MSKCC COPATH ORDERING SETS FOR MOLECULAR TESTING

- Molecular Lung Adenoca (NGS – IMPACT)
- Molecular – T790M
 - 15 Unstained slides for resections
 - 20 Unstained slides for small biopsies
- Specific orders for ALK and ROS1 FISH
- Other platforms (i.e. Sequenome)

Molecular Processing: 1 vs 2 Blocks

- Two Block Setting
 - Diagnostic IHC; if adeno: TTF-1, ALK (D5F3) and EGFR (L858R), PD-L1
 - Second block: Run Group Stains: Molecular Lung (4 choices) – USS directly to DMP
- One Block Setting
 - Diagnostic IHC: i.e. TTF-1, ER, CDX2
 - Unstained Recut (20 small bx, 15 resection)
 - Slides returned to fellow – send USS with H&E to DMP with paper form

KEY PRINCIPLES

- Minimize diagnostic stains to maximize tissue for molecular studies
- Molecular testing is reliable on FFPE tissues – even very small samples
- Unstained slides (n=15-20) provide adequate DNA if sufficient tumor
- Cytology fluids (i.e. pleural) – cytospin and make cell block (for IHC/molecular)

NEW DEVELOPMENTS IN ADVANCED LUNG CANCER DIAGNOSIS

- Immunotherapy – PD-L1 Immunohistochemistry
- Cell free DNA analysis (liquid biopsy)
PD-L1 IHC Assays for Lung Cancer

<table>
<thead>
<tr>
<th>Drug</th>
<th>Assay</th>
<th>PD-L1 scoring</th>
<th>Cut-offs assessed in clinical trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivolumab</td>
<td>28-8</td>
<td>Tumor cells</td>
<td>1%, 5%, 10%</td>
</tr>
<tr>
<td>Pembrolizumab</td>
<td>22C3</td>
<td>Tumor cells</td>
<td>1%, 5%, 50%</td>
</tr>
<tr>
<td>Atezolizumab</td>
<td>SP142</td>
<td>Tumor cells</td>
<td>1%, 5%, 50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immune cells</td>
<td>1%, 5%, 10%</td>
</tr>
<tr>
<td>Durvalumab</td>
<td>SP263</td>
<td>Tumor cells</td>
<td>25%</td>
</tr>
<tr>
<td>Avolumab</td>
<td>73-10</td>
<td>Tumor cells</td>
<td>1%</td>
</tr>
</tbody>
</table>

Courtesy of Ming Tsao

PD-L1 IHC: CHALLENGES
- Five different IHC clones, staining platforms & scoring criteria
- Limited tissue – cannot perform all assays after genomic testing
- Heterogeneity of staining
- Need for standardization of testing and interpretation of results
- Lack of data on cytology specimens

CELL FREE DNA ASSAYS

- Detection of circulating tumor cells – new technology with some potential
- FDA approved CellSearch System for circulating tumor cell detection
- In patients with a genomically defined solid tumor – may be clinically useful
- However, not validated for lung cancer diagnosis and its lower sensitivity could delay diagnosis compared to tissue biopsy

SUMMARY
- 2015 WHO Classification provides diagnostic criteria and terminology to be used in small bx and cytology
- Need strategic approach to use of small specimens not only for diagnosis but for molecular testing
- Rapidly evolving field requires following new technology (IHC, molecular)
- Need multidisciplinary team
- Computer IT input is critical