Metabolic enzymes (IDH, FH, SDH) and mesenchymal tumor(syndrome)s

Judith V.M.G. Bovée
Department of Pathology
LUMC, THE NETHERLANDS

Disclosure of Relevant Financial Relationships

USCAP requires that all faculty in a position to influence or control the content of CME disclose any relevant financial relationship WITH COMMERCIAL INTERESTS which they or their spouse/partner have, or have had, within the past 12 months, which relates to the content of this educational activity and creates a conflict of interest.

Dr. Bovée declares she has no conflict(s) of interest to disclose.

Hallmarks of cancer

Tumours with somatic IDH1 or IDH2 mutations

- Glioma 80%
- Enchondroma, chondrosarcoma 40-60%
- Spindle cell hemangioma 70%
- Sinonasal undifferentiated carcinoma 55% (IDH2)
- Acute myeloid leukemia 20%
- Intrahepatic cholangiocarcinoma 20%
- Angio-immunoblastic T-cell lymphoma 20%
- Thyroid carcinoma 16%
- Melanoma 10%
- etc

Central cartilaginous tumours

- Enchondroma
 - In the medulla of bone
 - Small bones hands and feet

- Central chondrosarcoma
 - In medulla
 - Can be secondary to enchondroma
Enchondromatosis; Ollier disease
- Unilateral predominance
- Non hereditary
- Rare (1:100,000)
- Risk secondary chondrosarcoma 40%

Enchondromatosis; Maffucci syndrome
- Multiple enchondromas
- Multiple haemangiomas
- Unilateral predominance
- Extremely rare
- Associated with
 - Secondary central chondrosarcoma (~40%)
 - Angiosarcoma (3%)
 - Other malignancies (5%) including gliomas

IDH1 and IDH2 mutations in central cartilage tumors
- Ollier EC: 87%
- Secondary CS: 86%
- Primary central CS: 38-70%
- Periosteal CS: 15%
- Dedifferentiated CS: 54%

Somatic mosaicism in Ollier disease / Maffucci syndrome

The role of mutant IDH in tumor formation

Increased D2HG and hypermethylation in enchondroma

Adapted from K. Ichimura; Brain Tumor Pathol 2012

Pansuriya et al, Nat Genet 2011

Pansuriya et al, Int J Clin Exp Pathol 2010

Pansuriya et al, Osteoarthr Cartil 2011

Verdegaal et al, Oncologist 2011

Pansuriya et al, Int J Clin Exp Pathol 2010

Pansuriya et al, Nat Genet 2011

Cleven et al, Histoarchitecture 2015

Amary et al, J Pathol 2011

Amary et al, Nat Genet 2011

Pansuriya et al, Nat Genet 2011
From IDH mutation to enchondroma formation

D2HG → Epigenetic changes → Differentiation → Enchondroma

D2HG inhibits osteogenic differentiation

in vitro

Control | D-2-HG | D-2-HG | PBS

in vivo

Suijker et al, Oncotarget 2015

Inhibition of mutant IDH1 in chondrosarcoma cell lines

Cell viability after 72h | Migration | Colony formation

Suijker et al, Oncotarget 2015

Usefulness at diagnosis

- Chondrosarcoma versus chondroblastic osteosarcoma
- Dedifferentiated chondrosarcoma

Spindle cell hemangioma

- Benign vascular tumor
- Dermis and subcutis
- Wide age distribution; often children and adolescents
- Predilection for distal extremities
- Locally progressive over many years, but no true recurrence and distant metastases
- ~50% present as multifocal disease
- 5% arises in context of Maffucci syndrome
- 71% IDH1 mutations (IDH1 R132C)

Kurek et al, Am J Pathol 2012

Spindle cell hemangioma: histology

Suijker et al, Arch Pathol Lab Med 2013
SDH related tumours

- Extra-adrenal paraganglioma 40%
- Pheochromocytoma 3%
- Gastric GIST 5.75%
- Renal cell carcinoma 0.05-0.2%
- Pituitary adenoma 0.3%
- Hereditary paraganglioma
- Carney-Stratakis syndrome
- Carney's triad

- Germline inactivating mutations
- Autosomal dominant

paragangiomas

- Rare: 2–8 per million people
- Peak incidence 3rd to 4th decade
- Often benign
- High morbidity and mortality in case of production (catecholamines) or mass effect
- Autosomal dominant inheritance pattern

SDHB immunohistochemistry

SDHB IHC is negative when mutations are present in SDHA, -B, -C or -D

Loss of SDHA expression reliably predicts germline SDHA mutation

Berkant and Strauss. Internal Med 2009
SDH deficient GIST

- Exclusively gastric
- Children and young adults
- Estimated frequency ~7.5% of gastric GIST
- Female predominance
- Indolent clinical behaviour:
 - lymph node metastases 20-59%
 - Poor response to imatinib
 - Gastric recurrence is common

![Image](image1.png)

Genetics of SDH deficient GIST; 2 groups

67% SDHx mutations, 82% germline

- 62% female, median (range) age 23 (7-58) years
- ~30% presented with metastases (liver, peritoneal, lymph node)

22% methylation of the SDHC promoter leading to silencing of expression.

- young females, median [range] age, 15 [8-50] years
- ~40% presented with metastases (liver, peritoneal, lymph node).

![Image](image2.png)

SDH deficient GIST; histology

- Multinodular and plexiform growth pattern in muscularis propria
- Epithelioid morphology
- Lymphovascular invasion >50% (not prognostic!)
- Risk assessment not informative
- IHC:
 - KIT +++
 - DOG1 ++
 - SMA –
 - IGF1R

![Image](image3.png)

Female 26 tumor stomach

Female 26 tumor mediastinum

Calciﬁed lung nodule

Carney’s triad:
1. Epithelioid gastric GIST
2. Pulmonary chondroma
3. Extra-adrenal paraganglioma

- Young women, antrum
- Multifocal, epithelioid
- 47% metastases (lymph nodes)
- Unpredictable behaviour
- Loss of SDHB, no SDH mutations
- SDHC hypermethylation

![Image](image4.png)

Male 50 years, paraganglioma, tumor stomach:

Male 50 years, paraganglioma, tumor stomach:

- DOG1
- SDHB
- SDHA
Carney-Stratakis

- Epithelioid gastric GIST + paragangliomas
- Males = females
- IHC: loss of SDHB protein expression
- Germline mutations in SDHB, -C or –D
- Autosomal dominant

From SDH mutation to paragangioma development

- Loss of ShMC
- Increased H3K9me3

Similar mechanism in SDH deficient GIST

- Loss of ShMC

FH deficient tumours: HLRCC syndrome

1. Multiple cutaneous piloleiomyomas
2. Multiple early onset uterine leiomyomas
3. Type 2 papillary kidney cancer

- Germline inactivating mutations
- Autosomal dominant

HLRCC syndrome

- Extremely rare: ~150 families worldwide
- RCC is aggressive, early onset, propensity for early metastases
- Lifetime risk: ~15%

Early genetic testing and periodic renal imaging!
FH deficient uterine leiomyoma

- Symptomatic LM in up to 98% of female HLRCC patients
- Often hysterectomy before age 30

FH deficiency:

<table>
<thead>
<tr>
<th>Type</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unselected non-atypical LM</td>
<td>1.6%</td>
</tr>
<tr>
<td>Cellular LM</td>
<td>1.8%</td>
</tr>
<tr>
<td>Atypical LM</td>
<td>37.3%</td>
</tr>
<tr>
<td>Leiomyosarcomas</td>
<td>0%</td>
</tr>
</tbody>
</table>

- Somatic mutations in ~1% of all uterine leiomyomas

FH deficient uterine leiomyoma

Distinctive histological features:

- Distinctive hemangiopericytomatous vascular pattern
- Hypercellularity
- Small eosinophilic nucleoli with perinucleolar halo
- Stromal edema
- Chain-like arrangement of cells
- Atypia

FH deficient uterine leiomyoma

- Nuclear atypia
- Multinucleation
- Prominent nucleoli
- Mitoses including atypical mitoses
- Low biologic potential

Immunohistochemistry to establish FH deficiency

- S-(2-succino)-cysteine (2SC)
 - Sensitive, less specific
 - Not commercially available
- Fumarate hydratase
 - Less sensitive, more specific
 - Commercially available

From FH mutation to LM formation: mechanism similar to SDH

- Increased H3K9me3
- Loss of 5hmC

Harrison et al, Oncotarget 2015
Common mechanism of tumor formation

Inhibition of:
- TET2 DNA hydroxylase
- JmjC histone demethylase
- HIF Prolyl Hydroxylases

DNA hypermethylation → Inhibition of differentiation

Summary; implications for the pathologist

- Identify these patients
- Based on combination of different tumors
- Based on specific morphology
- Recommend genetic counseling
- Include this information at multidisciplinary tumor boards:
 - Surveillance and prevention
 - Therapy

Thank you