Cardiovascular Device Infection and the Role of Biofilm

Robert F. Padera, M.D., Ph.D.
Department of Pathology
Brigham and Women’s Hospital
Harvard Medical School
March 5, 2017

Disclosure of Relevant Financial Relationships

USCAP requires that all faculty in a position to influence or control the content of CME disclose any relevant financial relationship WITH COMMERCIAL INTERESTS which they or their spouse/partner have, or have had, within the past 12 months, which relates to the content of this educational activity and creates a conflict of interest.

Dr. Robert Padera declares he has NO conflict of interest to disclose.

Outline

• Case of medical device infection
• Medical device infections and biofilm
• Biofilm formation and biology
• Potential therapies and interventions

Case – Medical Device Infection

• 62F with coronary artery disease and old myocardial infarction
• Developed end-stage heart failure – listed for transplant
• HeartMate II ventricular assist device as bridge to transplant

Case – Medical Device Infection

• Presented 6 months later – fever, malaise and drainage/dehiscence of driveline – prior driveline site trauma
• Blood and driveline cultures grew Staphylococcus epidermidis
• Driveline site debrided, vacuum drain placed, and appropriate antibiotics started
• Improved, discharged home after 10 day hospital course
• Re-presented 2 weeks later after mechanical fall with head strike
• Prior to this had several days of progressive fatigue, weakness, drowsiness and increased drainage from driveline
• Blood and driveline cultures grew Staphylococcus epidermidis
• Fall resulted in fatal subdural hematoma

Driveline Exit Site
Pump Pocket

Driveline Healing

Well healed
Poorly healed (our case)

Gram Stain

Outline

• Case of medical device infection
• Medical device infections and biofilm
• Biofilm formation and biology
• Potential therapies and interventions

Infections and Biomaterials

- Elek and Cohen (1957) – foreign body decreased the threshold infection-causing inoculum from 10^8 to 10^2 for *S. aureus*
- Common organisms in biomaterial-related infections
 - Staph. epidermidis
 - Staph. aureus
 - Strep. viridans
 - Enterococcus faecalis
 - Pseudomonas aeruginosa
 - Proteus mirabilis
 - Escherichia coli
 - Klebsiella
 - Candida
 - Aspergillus

Gram positive bacteria

Gram negative bacteria

Fungus

Medical Device Infections and Biofilm

- Biofilm implicated in 65% of hospital infections
- Cost estimates ~$25 billion per year in US (~2 “Walls”)
- Current treatment – antibiotics and device removal
Biofilm

- Biofilm: Multicellular consortium of microbial cells, irreversibly associated with a surface and enclosed in a self-produced extracellular matrix composed primarily of polysaccharides
- Natural process—environmental, industrial and medical systems
- Overwhelming majority of earth’s microbial biomass exists as biofilm rather than in free-floating (planktonic) form

Outline

- Case of medical device infection
- Medical device infections and biofilm
 - Biofilm formation and biology
 - Potential therapies and interventions

Biofilm Formation

1: Initial attachment
2: Matrix production for enhanced adherence
3: Early biofilm development
4: Biofilm maturation and differentiation
5: Organism dispersion

Stoodley et al., Anna Rev Microbiol 2002; 56:187-209

Why Bother? – Advantages of Biofilm

- Protection from external environment
 - Desiccation, chemical/osmotic shifts
 - Protozoa, host macrophages and neutrophils
 - Bactericidal molecules made by other organisms, antibiotics
- Cooperation, diversity, division of labor
 - Specialization, conservation of resources
 - Horizontal transfer of beneficial genetic material
 - “Persister” cells

Donlan and Costerson, Clin Microbiol Rev 2002; 15:167-93

Attachment to Surface

- Conditioning film formation on material surface
 - Host adhesive molecules (e.g., fibronectin, proteoglycans)
- Binding to conditioning film or to bare biomaterial
 - Organism surface molecules (e.g., Staphylococcal surface protein-1, autolysin E, fibrinogen binding protein FbpA)
- Practice – 3.5-3.6 billion years
- Reversible attachment
- Still behaving like planktonic bacteria
 - Not yet committed to biofilm lifestyle

Matrix Production and Early Biofilm Formation

- Fundamental switch in gene expression reflects commitment to biofilm lifestyle
 - Upregulate ECM production for irreversible attachment
 - Change in modes of locomotion (pili replace flagella)
 - Change in intercellular interactions (upregulate polysaccharide intercellular adhesin (PIA))
 - How do they know when it is time to make this switch?
Quorum Sensing

- HSL - N-acyl-L-homoserine lactone
- [HSL] reflects number and proximity of organisms; perception of a threshold concentration indicates a certain density of organisms
- Provides cell density-dependent gene regulation

Quorum Sensing

- Communication system for microorganisms to monitor population density and establish cooperative behavior
- *Vibrio harveyi* bioluminescence

Quorum Sensing

- Signaling molecules are species-specific
- Allows for “jamming” other organisms signals

Biofilm Maturation

- Radically different phenotype than planktonic organisms in *P. aeruginosa* studies
 - 50% of proteome with at least 6-fold difference in expression, including 300 new proteins not expressed by planktonic forms
- Generation of complex architecture – nutrient-driven
- Variation in growth rates – detection
- Redistribution and differentiation of cells
- Persister cells – stem-like properties

Persister Cells

- Cells resistant to a lethal dose of antibiotics (or other lethal stresses) with the ability to re-grow the biofilm
- Likely why only effective therapy is removal of infected device

Persister Cancer Stem Cells

- Cells resistant to a lethal dose of antibiotics, chemotherapy, radiotherapy (or other lethal stresses therapies) with the ability to re-grow the biofilm tumor
Cheats
- Biofilm provides benefit to population of individual organisms
- Exploitation by “cheats” – individuals that avoid the cost of producing goods while benefiting from those produced by others

Organism Dispersion
- Release of cells or groups of cells from biofilm
- Least well understood of biofilm processes
- Likely mediated by quorum sensing, nutrient depletion
- Mechanical/hydrodynamic forces in cardiovascular device infections
- Change in gene expression back to planktonic program with release of matrix degrading enzymes

Outline
- Case of medical device infection
- Medical device infections and biofilm
- Biofilm formation and biology
- Potential therapies and interventions

Potential Therapies/Interventions
- Prevent bacterial adhesion
- Disrupt quorum sensing – extracellular and intracellular signaling pathways – mother nature
- Degrade/disrupt extracellular matrix
- “Trojan horse” – introducing cheats, lytic bacteriophage
- Mechanical disruption - ultrasound
- Device design (e.g., smaller, eliminate driveline)
- Combination of all of the above and more

Potential Therapies/Interventions
- Promote healing – “race to the surface”

Take Home Points
- Medical device infections are predominantly caused by biofilm-forming organisms
- Organisms behave very differently in biofilm vs. free-floating (planktonic) forms
 - Quorum sensing
 - Changes in gene expression
 - Persister cells
- By understanding mechanisms of disease, novel therapeutic strategies to prevent and treat these infections can be designed

Gristina AG. Science 1987; 237:1588-95
Cardiovascular Device Infection
and the Role of Biofilm

Robert F. Padera, M.D., Ph.D.
Department of Pathology
Brigham and Women’s Hospital
Harvard Medical School
March 5, 2017