Cryptogenic Cirrhosis: An Approach To The Diagnosis In The Era Of Molecular Medicine

Dr. Dhanpat Jain
Professor of Pathology and Internal Medicine (Gastroenterology)
Director Division of GI Pathology and Fellowship Program
Yale University School of Medicine, New Haven, CT

Cryptogenic Cirrhosis

- Definition
- Incidence
 - Children
 - Adults
- Role of genomic sequencing/molecular pathology in the work up in liver disease of unknown etiology
 - Inherited metabolic disorders
 - Viral hepatitis
 - Future direction

Incidence of Cryptogenic Cirrhosis

- 1965: HBsAg
- 1969: FFAIC
- 1980: HCV
- 2004: Occult HCV
- 2009: WES

- <1970: >60%
- 1970-90: 5-30%
- 1990-2000: 5-10%
- 2000-2017: 5-10%

- Etiology of cirrhosis remains unknown despite work-up
 - Clinical history
 - Laboratory work-up
 - Pathologic analysis

Cryptogenic Cirrhosis: Definition

- Inherited genetic & metabolic causes are more common in children
- Viral hepatitis & FLD are more common in young adults

Etiology of Cirrhosis In Children and Young Adults (n=187)
A. Gorung, S. Vilarinho, P. Misra, D. Jain

- Incidence of cryptogenic cirrhosis in children (<18Y) and young adults (18-40Y) is similar (~10%)
- Incidence of cryptogenic cirrhosis and etiology of cirrhosis in young adults (18-40Y) are similar to those reported in adults
- Etiology of cirrhosis in children is different from adults
 - Inherited/genetic & metabolic causes are more common in children
 - Viral hepatitis & FLD are more common in young adults

Disclosure of Relevant Financial Relationships

USCAP requires that all faculty in a position to influence or control the content of CME disclose any relevant financial relationship WITH COMMERCIAL INTERESTS which they or their spouse/partner have, or have had, within the past 12 months, which relates to the content of this educational activity and creates a conflict of interest.

Dr. Dhanpat Jain declares he has no conflict of interest to disclose.
ETIOLOGY OF CIRRHOSIS

Children:

- Congenital cholestatic syndromes: 44%
- Metabolic & genetic diseases: 22%
- Autoimmune diseases: 18%
- Cryptogenic: 9%
- Fatty liver disease: 3%
- Viral hepatitis: 4%

Adults:

- Congenital cholestatic syndromes: 5%
- Metabolic & genetic diseases: 4%
- Autoimmune diseases: 7%
- Cryptogenic: 6%
- Fatty liver disease: 15%
- Viral hepatitis: 4%

- NAFLD/NASH
- Autoimmune hepatitis
- Chronic cholestatic/biliary disorders
- AAT inclusion disease
- Hepatic vascular disorders
- Occult alcoholic liver disease

Cryptogenic cirrhosis: Histologic analysis

- NAFLD/NASH
- Autoimmune hepatitis
- Chronic cholestatic/biliary disorders
- AAT inclusion disease
- Hepatic vascular disorders
- Occult alcoholic liver disease

Role of molecular diagnostics in Cryptogenic cirrhosis??
Genomic sequencing

- NGS is now readily available, reasonably cheap and is used in clinical application including the work up of liver disorders of unknown etiology
 - Whole genome analysis
 - Whole exome analysis
 - 1% of whole genome, but 85% of all disease causing variants
 - Selected gene panel

Case example

- 25 years old female found to have features suggestive of cirrhosis with esophageal varices, splenomegaly and mild thrombocytopenia
 - Labs:
 - Liver transaminases and alkaline phosphatase were mildly elevated AST 141 u/l, ALT 114 u/l, alkaline phosphatase 596 u/l, GGT 734 u/l, albumin 4.2 gm/dl and conjugated bilirubin 1.6 mg/dl
 - Viral (Hepatitis A, B and C) were negative and autoantibody screen was also negative.
 - Serum immunoglobulin levels were normal
 - Increased 24h urine copper (> 100 mcg)
 - Ceruloplasmin level was normal (38 mg/dl (ref 18–46), normal serum free copper (0.6 μg/dl (ref 0.0–10.0))
 - Liver biopsy
Diagnosis: Wilson disease with cirrhosis

Treatment:
- Started on zinc therapy, but was switched to Trientine due to GI side effects.
- After >12 months of treatment her transaminase levels did not improve and urine copper remained elevated.
- Mutations for Wilson disease (ATP7B) were negative
- Diagnosis: Cryptogenic cirrhosis

Progressive familial intrahepatic cholestasis (PFIC-3)

Another Case!
- 5 Y female child from India result of an consanguineous marriage presented with cirrhosis
- Based on clinical features and laboratory data diagnosed as Wilson disease
 - Mutations for Wilson disease (ATP7B) were negative
 - Underwent OLT at age 9
 - Explant showed Cirrhosis and HCC (2 nodules, 1.9 and 1.5cm)
 - Post-Tx developed progressive neurodegenerative symptoms and died at 10y

ABCB4 mutations (MDR3)

<table>
<thead>
<tr>
<th>Nucleotide change</th>
<th>Amino-acid change</th>
<th>Location</th>
<th>Zygosity</th>
<th>Reference/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>c984T>G</td>
<td>pY328</td>
<td>Exon 9</td>
<td>heterozygous</td>
<td>Nonsense mutation</td>
</tr>
<tr>
<td>c3218G>A</td>
<td>pC1073Y</td>
<td>Exon 25</td>
<td>heterozygous</td>
<td>Unclassified novel variant</td>
</tr>
</tbody>
</table>

Presentation of Progressive Familial Intrahepatic Cholestasis Type 3 Mimicking Wilson Disease: Molecular Genetic Diagnosis and Response to Treatment

- Correct diagnosis was established based on WES
- Identified novel mutations of a known genetic inherited genetic metabolic disorder
- Helped institute appropriate therapy
WES of the proband revealed a homozygous missense mutation in MPV17 gene (c.148T>C)

Both parents were heterozygous carriers for the same mutation

Mitochondrial depletion disorder leading to neurodegenerative disease
- Neurologic symptoms (90%)
 - Developmental delay
 - Hypotonia, muscle weakness, seizures, ataxia, peripheral neuropathy
- Liver involvement (90%)
 - Liver failure or cirrhosis in early childhood

By boy seen in liver clinic with intermittently elevated transaminases
- (AST 30-131 U/L, ALT, 19-297 U/L), normal GGT levels and preserved liver synthetic functions
- Turkish decent, parents are 2nd cousins
- Full term baby with mildly delayed developmental milestones
- Transaminase elevations noted since 8 month of age
- Normal growth (weight and height between 25th-50th and 50th-75th percentile, respectively)
- At 6.5y developed some neurologic symptoms
- Liver and spleen not palpable
WES revealed homozygous mutation in \textit{ACOX2} gene (premature termination at codon 69).

- \textit{ACOX2} encodes a branched-chain Acyl-CoA oxidase, a peroxisomal enzyme expressed in the liver and kidney.

Both parents and brother found to be heterozygous, but clinically normal.

Elevated serum levels of 3α,7α-dihydroxy-5β-cholestanolic acid (DHCA) and 3α,7α,12α-dihydroxy-5β-cholestanolic acid.

Low levels of Cholic acids and its conjugates.

- ACOX2

- ACOX2 (Acyl CoA oxidase)
Subsequent follow-up

- Patient put on replacement bile acids
- Normalization of transaminases
- Long term outcome awaited

ACOX2 deficiency: A disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment

- Identified novel genetic inherited disorder based on WES
- Identification of the specific defect predicted biochemical and laboratory abnormalities
- Understanding the pathophysiology helped institute appropriate therapy

How useful is genomic sequencing?

- Retrospective analysis of cryptogenic cirrhosis (age <40Y)(n=30) from FPPE liver biopsies
 - Satisfactory DNA sample (n=15)
 - Mutations identified (n=5)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Abnormality detected</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2g/M</td>
<td>ATP7B : compound/comp</td>
<td>Wilson Disease</td>
</tr>
<tr>
<td>2/M</td>
<td>MFV17 (p.R880)</td>
<td>7MDS</td>
</tr>
<tr>
<td>37/F</td>
<td>ABCB4 (p.G93X)</td>
<td>?PFIC3</td>
</tr>
<tr>
<td>39/F</td>
<td>ABCB4 (p.R102Q)</td>
<td>?PFIC3</td>
</tr>
</tbody>
</table>

What about viral infections??

- Negative HCV antibodies undetectable viral load, but evidence of HCV infection by
 - HCV-PCR from liver tissues (extra-hepatic tissues)
 - HCV-PCR from PBMC
 - In-situ hybridization
- Can occur
 - Post therapy
 - Self clearance of virus
- Incidence varies between studies
- The evidence for OCI is substantial and growing
- Natural history of OCI is not yet fully defined
Cryptogenic cirrhosis: Suspected etiologies

- Metabolic/ inherited disorders
 - Bile salt transporter defects
 - Bile salt synthetic defects
 - Mitochondrial disorders
 - Short telomere syndrome
 - Keratin 8 and 18 mutations
 - Glutathione S-transferase mutations
 - A1A1 disease
 - Wilson disease
 - Iron overload disorders (HFE or non-HFE)

Future directions

- Genomic analysis is likely to find more application is routine clinical practice in the work up of liver disorders of unknown etiology
 - Whole genome analysis
 - Whole exome analysis
 - Selected gene panel
- Many new genetic alterations are likely to be identified and help
 - Refine the existing knowledge of known disorders
 - Define new disorders
 - Identification of cryptic infections
Cryptogenic cirrhosis: Definition

- Etiology of the cirrhosis remains unknown despite work-up
 - Clinical history
 - Laboratory work-up
 - Pathologic analysis
 - Molecular and genetic analysis

CRYPTOGENIC CIRRHOSIS

- 1965: HBsAg, PFIC
- 1969: HCV, Occult HCV
- 1989: HCV, Castle HCV
- 2004: HCV, CASTLE HCV
- 2009: WES
- 2017: Refinement of AIH criteria
- 2020: Awareness of NAFLD/NASH

Important Information Regarding CME/SAMs

The Online CME/Evaluations/SAMs claim process will only be available on the USCAP website until September 30, 2017. No claims can be processed after that date.

After September 30, 2017 you will NOT be able to obtain any CME or SAMs credits for attending this meeting.

Thank You