NGS and Thyroid FNA: Utility, Implementation and Pitfalls

Marina N. Nikiforova, MD
University of Pittsburgh Medical Center
Disclosure of Relevant Financial Relationships

USCAP requires that all planners (Education Committee) in a position to influence or control the content of CME disclose any relevant financial relationship WITH COMMERCIAL INTERESTS which they or their spouse/partner have, or have had, within the past 12 months, which relates to the content of this educational activity and creates a conflict of interest. Dr. Nikiforova declares affiliation with UPMC/ CBLPath related to the ThyroSeq test.
Management of Patients with Thyroid Nodules

NGS and Thyroid FNA: Utility, Implementation and Pitfalls
Nikiforova MN.

Benign FNA

Indeterminate
20-30% risk of malignancy

Malignant

Benign history
Clinical Follow-up

Diagnostic Lobectomy

Malignant histology
Total thyroidectomy

Modified from Nishino M. Cancer Cytopathology 2015
Management of Patients with Thyroid Nodules

NGS and Thyroid FNA: Utility, Implementation and Pitfalls
Nikiforova MN.

NGS and Thyroid FNA: Utility, Implementation and Pitfalls
Nikiforova MN.

Modified from Nishino M. Cancer Cytopathology 2015
Next Generation Sequencing

- Sequence DNA/RNA in massively parallel configuration
- Interrogates multiple regions of genome at once
- Rapid and cost-effective
- High sensitivity
- Quantitative
- Used in clinical setting
Next Generation Sequencing Approaches

Whole genome, Exome, Transcriptome

• Discovery tools
• Expensive
• Time consuming
• Requires large amount of DNA/RNA
• Complex BI analysis and results interpretation
Transcriptome Analysis in Thyroid FNA Samples

- 9 thyroid FNA samples, negative for known alterations, 30 ng of RNA
- Novel fusions detected in 7/9 FNAs
Targeted Next Generation Sequencing

• Sequencing of multiple preselected genes or gene regions
• Requires small amount of NA (fewer number of cells)
• Faster TAT (faster sequencing and data analysis)
• Used in clinical setting
Targeted Next Generation Sequencing

<table>
<thead>
<tr>
<th>DNA/RNA isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGS library</td>
</tr>
<tr>
<td>preparation</td>
</tr>
<tr>
<td>Sequencing, BI Analysis</td>
</tr>
</tbody>
</table>
NGS technology allows for detection of all types of genetic alterations in a single workflow.

NGS

Point mutations
Indels

Copy number alteration

Gene fusions

Gene expression

NGS and Thyroid FNA: Utility, Implementation and Pitfalls
Nikiforova MN.
Molecular Alterations in Thyroid Cancer: Diagnostic

TCGA study of PTC

![Diagram showing genomic alterations in thyroid carcinoma](image)

- **Point mutations**: 74%
- **Gene fusions**: 15%

Gene Mutations and Fusions
- BRAF
- NRAS
- HRAS
- KRAS
- EIF1AX
- TERT
- TP53
- PTEN
- PIK3CA
- RET
- PPARG
- NTRK1
- NTRK3

Giordano T et al, Cell, 2014; 159:679-90
Molecular Alterations in Thyroid Cancer: Prognostics

Song YS et al. Cancer (2016)

Xing M et al. JCO (2014)

Song YS et al. Cancer (2016)
Molecular Alterations in Thyroid Cancer: Prognostics

NGS and Thyroid FNA: Utility, Implementation and Pitfalls
Nikiforova MN.

Multiple High-Risk Mutations Detected in Thyroid FNA Samples are Associated With Aggressive Cancer

Marina N. Nikiforova1, Linwah Yip1, Umamaheswar Duvvuri1, Simion Chiosea1, Daniel B. Kurloff2, Nicola Borrelli1, Steven Hodak1, Carlos Urmacher1, Yuri E. Nikiforov4
1 University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA. New York Head & Neck Institute, New York, NY; New York University Langone Medical Center, New York, NY; SCL Path, Inc., Rye Brook, NY

35 (55%) BRAF + Another HR mutation
18 (29%) RAS + Another HR mutation
3 (5%) Other Multiple HR mutations

55 (98%) Thyroid Cancer

51 (93%) Cancers with Aggressive Features:
• Extrathyroidal extension (55%)
• Vascular invasion (53%)
• Lymph node macrometastasis (47%)
• Poorly differentiated/anaplastic carcinoma areas (14%)
• Distant metastasis (8%)

American Thyroid Association Annual Meeting, 2016
Molecular Alterations in Thyroid Cancer: Therapeutics

Utility of Thyroid NGS Test

- **Diagnostic:** to improve accuracy of diagnosis in thyroid nodules with indeterminate cytology, eliminate diagnostic lobectomy

- **Prognostic:** to identify tumors with aggressive behavior

- **Predictive:** to select appropriate targeted therapy

Personalized Management of Thyroid Cancer
NGS Panels for Thyroid FNA Samples

Ion AmpliSeq™
- *Cancer hot spot panel (ThermoFisher Scientific)*
- 50 genes

ThyroSeq
- *Thyroid specific panel (UPMC)*
- 56 genes
NGS Utility for Diagnosis of Medullary Thyroid Carcinoma and Parathyroid Tissue in Thyroid FNA Samples

4,765 FNA samples (Bethesda III-V) analyzed by ThyroSeq® Genomic Classifier

- 21 (0.4%) FNAs showed MTC profile
 - 5 FLUS/AUS
 - 6 FN/SFN
 - 10 SMC
 - Surgery (n=13)
 - 13/13 cases diagnosed as MTC (100% PPV)

- 26 (0.6%) FNAs showed PT lesion profile
 - 20 FLUS/AUS
 - 6 FN/SFN
 - Surgery (n=10)
 - 10/10 cases diagnosed as Parathyroid Lesions (100% PPV)

American Thyroid Association Annual Meeting, 2016

NGS and Thyroid FNA: Utility, Implementation and Pitfalls
Nikiforova MN.
Implementation of NGS Test

- Custom NGS panel design vs. commercial product
- NGS instruments/sequencing platform/sequencing chemistry
- Analytical validation
 - Analytical sensitivity and specificity
 - Limits of detection
 - Depth of sequencing
- Clinical validation (NPV, PPV)
• Performed according to CLIA, CAP, and NY State Department of Health
• 413 tissue and FNA samples
• Analytical sensitivity >99% (CI: 96-100%)
• Analytical specificity >99% (CI: 98-100%)
• Validated in FNA, FRZ and FFPE tissues, >500x depth of coverage
• Limits of Detection (LOD) is 3-5% for SNVs, 1% for fusions
NGS Test Clinical Validation

Performance in AUS/FLUS (Bethesda III) Cytology Nodules

- Negative Predictive Value (NPV): 96%
- Positive Predictive Value (PPV): 83%

Performance in FN/SFN (Bethesda IV) Cytology Nodules

- Negative Predictive Value (NPV): 96%
- Positive Predictive Value (PPV): 83%

Nikiforov et al. Thyroid 2015

Nikiforov et al. Cancer 2014
NGS Testing Challenges in Clinical Setting

- FNA sample size
- Cell preservation
- Quality control
- Result annotation
- TAT
- Billing/reimbursement issues
Clinical Case: 60 year-old female with incidentally noted 1.5 cm thyroid nodule and another 0.6 cm nodule

Isthmus - Mixed solid and cystic nodule

Cytology:
- Isthmus nodule
 - Benign
- Right lobe nodule
 - Atypia of Undetermined Significance

AUS/FLUS:
- Cancer risk: 5-15%
- Repeat FNA?
- Diagnostic lobectomy?
- Observation?

Right lobe nodule submitted for NGS analysis
Clinical Case: 60 year-old female with incidentally noted 1.5 cm thyroid nodule and another 0.6 cm nodule

NGS Analysis:

<table>
<thead>
<tr>
<th>Gene</th>
<th>cDNA</th>
<th>Protein</th>
<th>Allelic Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAF</td>
<td>c.1799T>A</td>
<td>p.V600E</td>
<td>37%</td>
</tr>
<tr>
<td>PIK3CA</td>
<td>c.3140A>G</td>
<td>p.H1047R</td>
<td>21%</td>
</tr>
<tr>
<td>AKT1</td>
<td>c.49G>A</td>
<td>p.E17K</td>
<td>6%</td>
</tr>
<tr>
<td>TERT</td>
<td>c.1-124C>T</td>
<td>-</td>
<td>77%</td>
</tr>
</tbody>
</table>

Co-occurrence of \(\text{BRAF V600E, TERT, PIK3CA, AKT1} \) mutations:
- ~100% probability of cancer
- Increased risk of aggressive disease

Total Thyroidectomy:
- Papillary carcinoma, 0.6 cm
- Extrathyroidal extension
- Positive resection margin

Diagnostic and prognostic application

Nikiforova MN.
THANK YOU