Biomarkers in Ocular Melanoma
Patricia Chévez-Barrios, MD
Professor of Pathology and Laboratory Medicine and Ophthalmology, Weill Cornell Medical College
Pathology and Genomic Medicine, Houston Methodist Hospital
USCAP-AAOOP Companion Meeting

Disclosure of Relevant Financial Relationships
USCAP requires that all planners (Education Committee) in a position to influence or control the content of CME disclose any relevant financial relationship WITH COMMERCIAL INTERESTS which they or their spouse/partner have, or have had, within the past 12 months, which relates to the content of this educational activity and creates a conflict of interest.

Ocular Melanoma
Introduction

Ocular Melanoma

• Skin of eyelids
• Conjunctiva
• Uvea

Melanoma - Eyelids

• Rare eyelid tumor
• Basal cell, squamous cell and sebaceous carcinomas more frequent
• Associated with preexisting nevus or de novo
• Nevus > 0.5cm, irregular pigmentation and margins
Melanoma - Eyelids

Types
- Superficial spreading
 - Most common
 - Radial growth beyond invasive component
- Lentigo maligna melanoma
 - Face of elderly (pre-invasive form Lentigo Maligna)
- Nodular

Skin Melanoma

- Accounts for 75% skin-related deaths worldwide.
- Diagnosis is challenging due to large diversity of morphological patterns.
- Highest source of litigation in surgical pathology.

Melanoma - Diagnosis

Biomarkers

Patient

Identification of conditions

Predicts patient’s response to a treatment

Estimates progression or indolent behavior

Conventional Prognostic Markers

- Breslow thickness
- Clark level
- Growth phase (radial vs vertical)
- Tumor infiltrating lymphocytes (TILs) (density, type)
- Ulceration, present or absent
- Mitoses per mm²
- Status of sentinel lymph node (positive vs negative)
Histological staging

Prognostic Features

- **Depth of invasion (Breslow)**
 - Clark Level
 - 1
 - 2
 - 3
 - 4
 - 5

<table>
<thead>
<tr>
<th>10 YEAR Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>>95%</td>
</tr>
<tr>
<td>>75%</td>
</tr>
<tr>
<td>>55%</td>
</tr>
<tr>
<td>>35%</td>
</tr>
</tbody>
</table>

Mitoses per mm²

- **TILs**

Immunohistochemical Markers

- **S100**: Sensitive melanocytic marker but not specific. Excellent for desmoplastic melanoma.
 - Caviate: Usually negative or faintly positive in uveal melanoma.

- **HMB-45**: Helps differentiating benign nevi (decreased positivity with lesion depth/maturation) vs melanoma (consistent positivity in deeper part), not definitive in nevoid variants of melanomas.
Immunohistochemical Markers

Identification Biomarkers

- **MITF-1 & SOX-10:** Nuclear stains, best for lentiginous proliferations and pagetoid spread-difficult in-situ melanocytic lesions. Stain intraepithelial dendritic cells.
- **SOX-10:** High sensitivity for melanocytic differentiation. Used in desmoplastic melanoma along with S100 (recently reported in scar). **Caviate:** metastatic vs. breast, salivary gland carcinomas, neural crest tumors and clear cell sarcomas.
- **Ki-67 and pHH3:** Estimates proliferation rate (inflammatory cells). Co-staining with a melanocytic marker (HMB-45) may improve accuracy.

Immunohistochemistry

HMB45 (red) / Ki67 (brown)

Conjunctival Melanocytic Lesions

- Recent growth of lesion in bulbar conjunctiva (15 year-old)

Immunohistochemistry

Melan A (red) / Ki67 (brown)

Clinical – Primary Acquire Melanosis (PAM)

Fair skin, unilateral, flat conjunctival pigmentation
Biological diagnosis

Histologic diagnosis

Primary Acquired Melanosis (PAM)

Primary acquired melanosis (PAM) with atypia and Melanoma

No progression to melanoma

PAM with atypia

25-75% progression to Melanoma

25% mortality

PAM without atypia

PAM with atypia by bx.

Nodule developed – Melanoma by bx.

Clinical and Experimental Ophthalmology 2008; 36: 786–795

Clinical Approach to Patient with Melanoma

Biopsy Melanoma

Early Stage Late Stage

Microscopic Staging

Clinical staging

SLNBx

Imaging

LDH levels

Molecular staging

After tx

Targeted therapy

AJCC – staging and mutations

Sentinel Lymph Node Bx (Skin & Conjunctiva)

H&E

Melan A (immunohistochemistry)

Molecular Classification

- Highly heterogeneous disease
- Frequent driver mutations identified
- Regulate:
 - signal transduction pathways
 - developmental and transcriptional pathways
 - cell cycle

Prognostic markers

- Multimarkers assays
 - Single marker assays does not suffice in yielding enough prognostic or predictive information
 - Multimarkers give highly accurate information about prognosis or predictive response to therapy.
 - Prognostic multimarker signatures

- Epithelial to sarcomatoid morphology
- Inflammatory/immune pathways
- Angiogenesis
- Metastasis and invasion
Predictive markers

- Aim to predict patient response to treatment or combination of treatments.
- Could be very helpful in deciding personalized successful treatment.
- Very few tests are available clinically.

BRAF

- 50% of skin melanomas show mutations in BRAF gene.
- as an independent prognostic marker has shown conflicting data (found in benign nevi)
- vertical growth phase-melanomas = progression rather than genesis
- increased tumor thickness and ulceration
- Worse survival (5.7 months) for BRAF-mutant melanomas compared with BRAF-wild type cases (8.5 months)

BRAF

- 95% of the mutations found are at aa 600 leading to a constitutive MPAK/ERK pathway activation.
 - most commonly V600E (valine – glutamate)
 - sometimes V600K (valine – lysine)

Predictive markers

BRAF status to predict response to vemurafenib

- Vemurafenib improves PFS and OS in untreated melanomas carrying BRAF V600E mutation.
- Induced complete or partial tumor regression in 81% of BRAF + mutation patients.

BRAF

- Resistance due to upregulation of bypass pathways mediated by cancer Osaka thyroid kinase and the development of de novo NRAS or MEK mutations.

Predictive markers

Combined treatment response

- BRAF mutation can be either favorable (with cisplatin-vinblastine-temozolomide when associated with low O-6-methylguanine-DNA methyltransferase expression)
 - OR
- BRAF mutation can be detrimental (melphalan & actinomycin-D).
Predictive markers

BRAF - Testing

- BRAF mutations (V600E or V600K) can be detected from DNA samples from FFPE biopsy tissue through PCR testing.
- IHC for BRAF (V600E) shows excellent correlation with molecular-based analysis.
- Other point mutations of BRAF (V600K, V600Q, and V600R) melanomas do not stain positively with BRAF VE1 antibody.

NRAS

- 20% of melanomas show mutation of NRAS gene.
- NRAS as a prognostic indicator have shown mixed results
 - no difference in melanoma-specific survival compared with wild type tumors
- NRAS mutations frequently found in nevi and early melanomas
- Tumors with NRAS mutations are thicker (75% of NRAS mutated tumor were >1mm thick and had more than 1 mitosis/mm²)
- NRAS mutation is associated with poorer survival (this was not seen in low stage tumors, T2a or lower).

KIT (c-kit)

- Receptor tyrosine kinase that triggers downstream of different pathways (MAPK, PI3K, JNK and JAK/STAT) leading to cell growth, proliferation, migration and differentiation of melanocytes.
- Oncogenic potential of KIT in other tumors (GISTs, small-cell lung carcinomas and acute myeloid leukemia)
KIT (c-kit)

- KIT mutated in less than 5% of melanomas:
 - 30% of mucosal (conjunctival), 20% acral and 20% of melanomas arising in sun-damaged skin
- KIT in these specific scenarios behaves as an oncogene, providing a window to treat specific cases with KIT inhibitors

Imatinib
- An imatinib is a c-KIT inhibitor that is currently on phase II/III trials for patients with metastatic melanoma with c-KIT mutation.

Predictive markers

- **Predictors of immunotherapeutic agents**
 - No current biomarkers to predict success of immunotherapeutic agents (CTLA-4 (Ipilimumab) or PD-1/PD-L1 inhibitors (Atezolizumab)).

PD-L1 (programmed death receptor ligand 1)

- Negatively regulates T-cell function by binding to the PD-1 receptor on T cells = tumor evasion and proliferation
- Melanomas with aberrant expression of PD-L1 have poor prognosis
- Pembrolizumab and Nivolumab: human anti-PD-1 immune-checkpoint inhibitor antibody that blocks the interaction of PD-1 with PDL1 or another ligand PD-L2.

UVEAL MELANOMA
Clinical Approach to Patient with Uveal Melanoma

- Clinical Dx
- Benign - Nevus
- Melanoma
- Radiation plaque
- Biopsy
- Enucleation
- Molecular Prognostic testing
- Confirmation Dx
- Metastatic screening (liver)

Most Common Malignant Intraocular Tumors

- Children
 - Retinoblastoma
- Adult
 - Metastases
 - Uveal Melanoma

Choroidal Melanoma

- Predisposing factors
 - melanosis oculi and Nevus of Ota
 - BAP1 associated tumor predisposition syndrome
 - 6 cases per million in USA (60-70 years of age)
 - 50% uveal melanoma patients will develop metastasis

Melanoma of the Uvea

- Location = symptoms specific to the location will develop and facilitate early or late diagnosis
- Ciliary body melanoma presents later because of location (hiding behind the iris/lens)
- Most frequent in whites and lightly pigmented individuals

Melanoma

- Iris = nonaggressive
- 3.3 – 16.6% are from iris (~10 years earlier dx than choroidal)

Clinical Diagnosis

- Standard of care
- Patients treated based on clinical/imaging features
Uveal Melanoma

- Metastasis 80% to liver (90% in liver prior to death)
- 1/3 of metastatic MM solely to the liver
- No difference in survival: local treatment with radiation plaque vs. enucleation (COMS prospective trial)

High Risk Prognostic Factors

Malignant Melanoma – Size, location

Callender Classification

Spindle A
Spindle B
Epithelioid
Mixed Melanoma

Vasculogenic Mimicry

Uveal Melanoma

Callender Classification

Spindle Melanoma
Epithelioid Melanoma
Mixed Melanoma

Five main genes are implicated in development and progression in UM:
- BAP1, EIF1AX, GNA11, GNAQ, and SF3B1

Genetic features associated with metastasis include:
- Monosomy 3 and gain of chromosome 8q
- BAP1, SF3B1, and EIF1AX mutations occur during UM tumor progression
- Mutually exclusive manner = different levels of metastatic risk.
Molecular Heterogeneity

FISH analysis on paraffin sections showed that heterogeneity of monosomy of chromosome 3 is a frequent phenomenon in uveal melanoma.

Molecular genetics in Uveal melanoma

- **BAP1, SF3B1, and EIF1AX** occur later in tumor progression
- **Prognostically significant**

BAP1 – Epithelioid phenotype

BAP1

- Inactivating mutations in BAP1 are seen in 47% (27/57) uveal melanomas.
- Metastasis developed in the vast majority (26/27) of these tumors, many of which also showed monosomy of chromosome 3.
- These findings support the thesis that BAP1 is a classical tumor suppressor gene (Knudson’s two-hit model)
- One allele of BAP1 being lost via monosomy of chromosome 3 and the second allele being lost by inactivating BAP1 mutation/

Molecular genetics in Uveal melanoma

- BAP1 mutations recently reported to increase susceptibility for the development of uveal melanoma, cutaneous atypical and epithelioid melanocytic lesions, clear cell renal cell carcinoma, mesotheliomas and other tumors.

BAP1 testing

- Direct (Sanger) sequencing of the BAP1 gene using blood or salivary DNA from the individual(s) of interest (suspect of BAP1 related predisposition syndrome).
- BAP1 testing in tumors by RT-PCR
- BAP1 IHC in paraffin embedded tumor tissue (BAP1 loss of staining by IHC)
- Equivocal IHC results may undergo subsequent confirmatory sequencing.

Gene expression profile analysis of primary uveal melanomas reveals two distinct tumor classes.

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>Direction of Change in Class 2 Tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDH1</td>
<td>E-cadherin</td>
<td>Up</td>
</tr>
<tr>
<td>ECM1</td>
<td>Extracellular matrix protein 1</td>
<td>Up</td>
</tr>
<tr>
<td>E1F1B</td>
<td>Eukaryotic translation initiation factor 1B</td>
<td>Down</td>
</tr>
<tr>
<td>FXR1</td>
<td>Fragile X mental retardation autosomal homolog 1</td>
<td>Down</td>
</tr>
<tr>
<td>HTR2B</td>
<td>5-hydroxytryptamine (serotonin) receptor 2B</td>
<td>Up</td>
</tr>
<tr>
<td>ID2</td>
<td>Inhibitor of DNA binding 2</td>
<td>Down</td>
</tr>
<tr>
<td>LMCD1</td>
<td>LIM and cysteine-rich domains 1</td>
<td>Down</td>
</tr>
<tr>
<td>LTA4H</td>
<td>Leukotriene A4 hydrolase</td>
<td>Down</td>
</tr>
<tr>
<td>MTUS1</td>
<td>Microtubule-associated tumor suppressor 1</td>
<td>Down</td>
</tr>
<tr>
<td>RAB31</td>
<td>RAB31, member RAS oncogene family</td>
<td>Up</td>
</tr>
<tr>
<td>ROBO1</td>
<td>Roundabout, axon guidance receptor 1</td>
<td>Down</td>
</tr>
<tr>
<td>SATB1</td>
<td>SATB homeobox 1</td>
<td>Down</td>
</tr>
</tbody>
</table>

GEP – Uveal Melanoma

- Based upon the clinical outcomes from the prospective, 5-year multicenter Collaborative Ocular Oncology Group (COOG) study, the test reports Class 1A, Class 1B and Class 2 phenotype:
 - **Class 1A**: Very low risk, with a 2% chance of the eye cancer spreading over the next five years;
 - **Class 1B**: Low risk, with a 21% chance of metastasis over five years;
 - **Class 2**: High risk, with 72% odds of metastasis within five years.
Genes and GEP group

- **BAP1** mutations were associated with class 2 GEP ($P < .001$) and older patient age ($P = .007$).
- **EIF1AX** mutations were associated with class 1 GEP and the absence of ciliary body involvement ($P = .03$ for both).
- **SF3B1** mutations were associated with younger patient age ($P = .006$).
- **GNAQ** mutations were associated with the absence of ciliary body involvement ($P = .008$) and greater largest basal diameter ($P = .04$).
- **GNA11** mutations were not associated with any of the analyzed features.

PRAME

- Small percentage of Class 1 tumors result in metastatic disease.
- Cancer-testis antigen PRAME (preferentially expressed antigen in melanoma) = biomarker for increased metastatic risk in Class 1 tumors.
- Increased PRAME mRNA expression in Class 1 UM associated with transcriptional up-regulation of key genes involved in chromosome maintenance and stability (1q and 6p).

Molecular Mechanisms in UM

Feed-forward mechanism = progressively increasing PRAME expression and specific chromosomal gains mutually reinforce one another to promote Class 1 tumor progression.
- association with **SF3B1** mutations (mutually exclusive with **EIF1AX** mutations) → bifurcated pathway.
- This Class 1 metastatic pathway distinct from the bi-allelic loss of **BAP1** and acquisition of the Class 2 gene expression profile.
Requirement of Tissue for Molecular Testing

- Adequacy of sampling
 - GEP does not discriminate between normal, benign or malignant melanocytic lesion
 - Blood elements = Class 1
 - Some metastatic carcinomas = Class 2
- Confirmation of diagnosis
- FNABx before radioactive plaque
- Tissue retrieval at time of enucleation
- FFPE tissue acceptable

Cytology: Sampling prior to plaque

- Diagnosis and molecular prognosis of uveal melanoma

Examples of Current Trials

- MD Anderson Cancer Center
 - Elizabeth Grimm, MD; Sapna Patel, MD
 - Not stratifying based on any biomarkers
 - Usually test for GNAQ and GNA11 and alter as a positive trend at recurrence in these groups.
- Uveal melanoma does not have effective treatment for metastatic phase.
- GEP or other prognostic molecular testing shows no detrimental psychological effect in most patients.
- Early treatment of localized metastasis and possible enrollment in clinical trials.

Conclusions

- Oncogenes in melanoma are relevant for prognosis and therapeutic biomarkers.
- Immunohistochemistry as surrogate for mutations (BRAF, BAP1, PRAME).
- Noninvasive biomarkers needed (blood circulating tc).
- Immunoprofiling is a valid form of biomarker.
- Need for predicting response of immuno-based therapies.
- Epigenetic alteration are an expanding group of potential biomarkers.
- Special type melanomas have different tumorogenesis and prognostic biomarkers.
- Development of combination therapies appear to be important in melanoma.
THANK YOU