GERM CELL TUMORS

Eyas M Hattab, MD
Department of Pathology and Laboratory Medicine
University of Louisville
eyas.hattab@louisville.edu

Disclosure of Relevant Financial Relationships

USCAP requires that all planners (Education Committee) in a position to influence or control the content of CME disclose any relevant financial relationship WITH COMMERCIAL INTERESTS which they or their spouse/partner have, or have had, within the past 12 months, which relates to the content of this educational activity and creates a conflict of interest.

GERM CELL TUMORS

GERM CELL TUMORS

• Germinoma
• Nongerminomatous GCTs
 • Embryonal carcinoma
 • Yolk sac tumor
 • Choriocarcinoma
 • Teratoma
 • Benign/mature teratoma
 • immature teratoma
 • Teratoma with “malignant transformation”
 • Mixed GCTs

WHO 2016

Introduction

- Largely homologues of GCTs elsewhere
- Different from non-CNS GCTs?
 - Morphology
 - No precursor lesions (GCNIS)
 - No spermatocytic “seminoma”
 - Clinical behavior
 - Prepubertal vs postpubertal
 - Origin

Historical perspective

- 1923 (Krabbe): “Pinealoma” Adenoma of the pineal body
 J Endocrinol 1923;7:379-414
- 1944 (Russel): “Atypical pineal teratoma” Pinealoma-Its relationship to teratoma
 J Pathol Bacteriol 1944;56:145-50
- 1946 (Friedman and Moore): “Germinoma” Tumors of the Tests: A report on 922 cases.
 Mil Surgeon 1946;99:573-93
- 1976: “Ultrastructural study of histogenesis of pinealoma”
 No To Shinkei 1976;28:41-56

Pathogenesis

- Germ cell theory
 - Primordial germ cells (PGC)
 - Common cell of origin: totipotent
 - Embryonic cell theory
 - Embryonic cell; pluripotent-blastocyst stage
 - Multiple embryonic cells at various stages of embryogenesis

Incidence

 - Adults: ~0.4% of all CNS neoplasms
 - 0.10/100,000
 - Children: ~4%
 - 0.21/100,000
 - Geographical variation: up to 15% in Far-East Asia and Japan (pediatric brain and tumors)
Incidence: Age-Adjusted

Localization

- Midline locations
 - Pineal/third ventricle
 - Suprasellar
 - BG, thalamus, ventricles, cerebral hemispheres, SC, etc.
 - Multifocal: synchronous/metachronous
 - Holocranial variants rare
- Germinomas: suprasellar, BG, thalamus
- NGGCTs: other sites

Incidence Rate Ratios by Sex (Males:Females)

Gender Distribution According to Location (Germinoma)

GERM CELL TUMORS

Clinical Manifestations

- Pineal
 - Aqueductal compression (increased ICPs, hydrocephalus)
 - Distortion of quadrigeminal plate (mental status changes, upward gaze palsies, etc., Parinaud syndrome)
 - Precocious puberty (NCGS)
- Suprasellar
 - Visual (loss of visual acuity, hypopituitarism)
 - Higher incidence / association
 - Klinefelter syndrome
 - Down syndrome

Radiographic Features

- Nonspecific
- Well-circumscribed, lobulated lesions
- T1: hypointense
- T2/FLAIR: mainly hyperintense
- Enhanced intensity and heterogeneously on both CT and MR
- Calcification (usually pineal)
- Hydrocephalus common
- Often partially cystic
- Local invasion common

Histology of CNS GCTs

Germinoma

GERM CELL TUMORS

Germinoma

Embryonal Carcinoma

OCT4

CD30

Yolk Sac Tumor

Yolk Sac Tumor
GERM CELL TUMORS

Yolk Sac Tumor

Choriocarcinoma

Mature Teratoma

Immature Teratoma

β-hCG

Immunohistochemistry: recent advances

α-fetoprotein

GERM CELL TUMORS

PLAP
- Previously the marker of choice
- Lacks specificity (epithelial malignancies)
- Nonspecific staining
- 23/25 (92%) positive membranous staining (only 2 at 3+)

“New” IHC Markers
- Glypican 3
- NANOG
- LIN28A
- OCT4
- Podoplanin/aggruss
- SALL4
- SOX2
- SOX17

OCT4
- Transcription factor
- Regulates initiation, maintenance, and differentiation of pluripotent and germine cells during normal development
- Normally expressed in embryonic stem cells
- Germinoma and embryonal ca
- High sensitivity/specificity

C-Kit
- Tyrosine-kinase glycoprotein
- Germinomas
- 23/25 (92%), 20 at 3+
- Negative or weak in EC
- No correlation with KIT mutations

SALL4
- Transcription factor
- Maintains embryonic stem cell pluripotency and self renewal (OCT4, NANOG, & SOX2)
- PanGCT marker
- Ideal screening marker
- Superior to AFP and glypican 3 in YST

<table>
<thead>
<tr>
<th>Transcription Factors</th>
<th>Podoplanin</th>
<th>Glypican 3</th>
<th>LIN28A</th>
<th>SALL4</th>
<th>OCT4</th>
<th>NANOG</th>
<th>SOX2</th>
<th>PLAP</th>
<th>KIT</th>
<th>CD30</th>
<th>Glypican 3</th>
<th>AFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germinoma</td>
<td>++</td>
<td>+++</td>
<td>++++</td>
<td>+++</td>
<td>–</td>
<td>+++</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Embryonal carcinoma</td>
<td>++</td>
<td>+++</td>
<td>++++</td>
<td>+++</td>
<td>++++</td>
<td>++</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Yolk sac tumor</td>
<td>±±</td>
<td></td>
</tr>
<tr>
<td>Choriocarcinoma</td>
<td>C/M</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>M/C</td>
<td>M</td>
<td>C</td>
<td>M/C</td>
<td>C/C</td>
<td>C/C</td>
<td>C/M</td>
<td>C/C</td>
</tr>
<tr>
<td>Mature teratoma</td>
<td>C/M</td>
<td>C</td>
</tr>
<tr>
<td>Immature teratoma</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>M/C</td>
<td>C</td>
<td>C</td>
<td>M/C</td>
<td>C/C</td>
<td>C/C</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Membrane-based proteoglycan

- Highly expressed in fetal tissues
- Regulation of cell growth and differentiation
- Highly expressed in YST and CC
- HCC, hepatoblastoma, ovarian clear cell ca

Useful immunohistochemical stains in intracranial GCTs

<table>
<thead>
<tr>
<th>Stain</th>
<th>Germinoma</th>
<th>Embryonal Carcinoma</th>
<th>Yolk Sac Tumor</th>
<th>Choriocarcinoma</th>
<th>Mature Teratoma</th>
<th>Immature Teratoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcription Factors</td>
<td>Podoplanin</td>
<td>LIN28A</td>
<td>SALL4</td>
<td>OCT4</td>
<td>NANOG</td>
<td>SOX2</td>
</tr>
<tr>
<td>βhCG</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>–</td>
<td>++</td>
</tr>
<tr>
<td>CK</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>AE1/3</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>D2-40</td>
<td>C</td>
<td>M</td>
<td>C</td>
<td>M</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Germinoma
- +++
- ++++
- ++++
- –
-

Embryonal Carcinoma
- +++
- +++
- +++
- –
- –

Yolk Sac Tumor
- +++
- –
- –
- –
- –

Choriocarcinoma
- +
- ±
- –
- –
- +
- –

Mature Teratoma
- –
- –
- –
- –
- C

Immature Teratoma
- ±
- –
- ±
- –
- ±
- –

Other differential diagnosis
- Infiltrative glioma
- Lymphoma
- Sarcoïdosis or infection
- Metastatic carcinoma
- Other differential diagnosis
- Infiltrative glioma
- Lymphoma
- Sarcoïdosis or infection
- Metastatic carcinoma

Genetics of CNS Germ cell tumors
- Mostly sporadic
- Syndromic associations:
 - Trisomy 21
 - Klinefelter (47 XXY): intracranial, mediastinal
 - NF1
 - 12p abnormalities common

Treatment and prognosis
- Prognostic variables: histology, location, and proximity to vital structures
- Germinomas:
 - CSI/whole brain, plus local boost
 - Recent trend: less radiation, in favor of cisplatin-based chemotherapy
 - >90%, 10-year survival
- Non-GCTs:
 - Mature teratomas: gross total resection
 - Immature teratomas: GTS + radiation
 - Congenital teratomas: invariably fatal
 - EC, YST, Chori: multimodal therapy; <45% 5-year survival
GERM CELL TUMORS

Age Distribution According to Location (Germinoma)

Mature Teratoma

OCT4

- Transcription factor
- Regulates initiation, maintenance, and differentiation of pluripotent and germine cells during normal development
- Normally expressed in embryonic stem cells
- Germinoma and embryonal ca are undifferentiated neoplasms with pluripotential
- 25/25 (100%); 22 at 3+
- Add CD30 or Aggrus if embryonal ca is in differential

Aggrus/Podoplanin

- Transmembrane sialoglycoprotein
- Physiological role
- Expressed in lung type I alveolar cells, lymphatic endothelial cells (lymphatic endothelial marker)
- Identified on surface of some tumor cells: platelet aggregation-inducing effect that did not require plasma components
- Not expressed in EC
- 19/20 (95%); 17 at 3+
Useful immunohistochemical stains in intracranial germ cell tumors

<table>
<thead>
<tr>
<th>Transcription Factors</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT4</td>
<td>N</td>
</tr>
<tr>
<td>NANOG</td>
<td>N</td>
</tr>
<tr>
<td>AP-2</td>
<td>N</td>
</tr>
<tr>
<td>γSOX2</td>
<td>N</td>
</tr>
<tr>
<td>PLAP</td>
<td>N</td>
</tr>
<tr>
<td>c-KIT</td>
<td>M/C</td>
</tr>
<tr>
<td>CD30</td>
<td>M</td>
</tr>
<tr>
<td>AFP</td>
<td>N</td>
</tr>
<tr>
<td>β-HCG</td>
<td>M/C</td>
</tr>
<tr>
<td>HPL</td>
<td>M</td>
</tr>
<tr>
<td>EMA</td>
<td>C</td>
</tr>
<tr>
<td>CK</td>
<td>C</td>
</tr>
<tr>
<td>AE1/3</td>
<td>M/C</td>
</tr>
<tr>
<td>D2-40</td>
<td>M/C</td>
</tr>
<tr>
<td>YM-1</td>
<td>M/C</td>
</tr>
</tbody>
</table>

Demographics

• Age distribution:
 • >90% younger than 25 years; peripuberty
 • Younger: teratoma and choriocarcinoma
 • Older: pure germinoma
 • Congenital forms
• Sex predilection:
 • M:F of 3.8:1
 • Pineal and BG: males
 • Suprasellar and congenital: slight female predominance

Genetics of CNS GCTs

• 12p abnormalities common
• Frequent gain in CCND2 (12p13) and PRDM14 (8q13), and losses of RB1 (13q14) = ? cyclin/CDK-RB-E2F pathway
• Mutually exclusive somatic mutations in KIT and RAS (germinomas) = ? KIT/RAS signaling pathway
• 8q, 1q, and X gains
• 18q, 9q and 11q losses

CNS vs Non-CNS GCTs

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-CNS</th>
<th>CNS</th>
<th>Similar?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Immunohistochemistry</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ultrastructure</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Genetics</td>
<td>✓</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

12p Abnormalities in CNS Germinomas
GERM CELL TUMORS

CNS vs Non-CNS GCTs

<table>
<thead>
<tr>
<th>Abnormality</th>
<th>Testicular</th>
<th>Ovarian</th>
<th>CNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12p OR</td>
<td>>90%</td>
<td>81%</td>
<td>96%</td>
</tr>
<tr>
<td>i(12p)</td>
<td>80%</td>
<td>76%</td>
<td>57%</td>
</tr>
</tbody>
</table>

- 12p overrepresentation (aneuploidization) precedes the formation of i(12p)
- FISH analysis for 12p abnormalities: Pathway diagnostic tool

• First described by Atkin and Baker, 1982
• Gain of extra copies of the short arm of chromosome 12 (overrepresentation), occasionally in tandem (isochromosome 12p)
• Hallmark genetic marker of testicular GCTs
• All types of GCTs, except Sertoli cell tumors
• Early event in GCT tumorigenesis vs progression
• Target genes overexpressed, 75 genes (GLUT3, REA, CCND2, FLJ23038, NARG1, STELLA, GDF3, BBG, TSEX1, ROX2, etc)
• "12p gain is a functionally relevant change leading to activation of proliferation and reestablishment/maintenance of stem cell function through activation of key stem cell genes" Korkola et al, Cancer Research 2006
• 12p overrepresentation may also be seen in esophageal, pancreatic and ovarian carcinomas

Outcome of CNS GCTs

Question?
Do CNS germinomas share the same genetic alterations known to non-CNS GCTs (12p abnormalities)?

Genetics of Testicular GCTs

- 12p gain
 - FISH analysis for 12p abnormalities: Pathway diagnostic tool
 - Target genes overexpressed, 75 genes (GLUT3, REA, CCND2, FLJ23038, NARG1, STELLA, GDF3, BBG, TSEX1, ROX2, etc)
 - "12p gain is a functionally relevant change leading to activation of proliferation and reestablishment/maintenance of stem cell function through activation of key stem cell genes" Korkola et al, Cancer Research 2006
 - 12p overrepresentation may also be seen in esophageal, pancreatic and ovarian carcinomas

Genetics of Ovarian Dysgerminoma

- 81% of cases showed 12p abnormalities
- 57%: i(12p) only
- 5%: 12p overrepresentation only
- 19%: i(12p) + 12p OR

How i(12p) is formed

- "12p gain is a functionally relevant change leading to activation of proliferation and reestablishment/maintenance of stem cell function through activation of key stem cell genes" Korkola et al, Cancer Research 2006
- 12p overrepresentation may also be seen in esophageal, pancreatic and ovarian carcinomas
- 12p overrepresentation may correlate with invasive growth of seminomas and nonseminomas

- "12p gain is a functionally relevant change leading to activation of proliferation and reestablishment/maintenance of stem cell function through activation of key stem cell genes" Korkola et al, Cancer Research 2006
- 12p overrepresentation may also be seen in esophageal, pancreatic and ovarian carcinomas
- 12p overrepresentation may correlate with invasive growth of seminomas and nonseminomas
Dual-color FISH
- Metaphase: whole isochromosome
- Interphase: numerical abnormality
- DNA Probes:
 - CEP12: Centromeric α-satellite – Ch12p; Vysis
 - Tel12: Subtelomeric – Ch12p; Vysis
- Controls:
 - Positive: classic testicular seminoma
 - Negative: internal lymphocytes

FISH Scoring
- 100 nuclei scored for CEP12 (red) and 12p (green) signals.
- Green : Red ratio calculated.
- 12p Overrepresentation:
 - Cutoff: average signal number plus 3X standard deviation (3SD), which represented about 99% accuracy.
 - Isochromosome 12p:
 - Spatial distribution of green / red signals analyzed: specific pattern of signal aggregation.

Correlation with clinical behavior?
- Followup available on 15/23 cases:
 - 12p abnormalities detected (22 cases):
 - Recurrence: 4/14, all with 12p OR and i(12)p
 - Death: 1/14
 - 12p abnormalities not detected (1 case):
 - 15-year-old male
 - Suprasellar
 - Alive, free of disease
 - Morphologically and immunohistochemically typical

Pure Germinomas: The IU Experience
- 32 primary intracranial germinomas over 22 year period:
 - Incidence: ~2% of all primary pediatric tumors at IUMC
 - One patient had mediastinal germinoma 16 years earlier (2nd primary)
- 14/28 received CT + Focal XRT:
 - 5 (36%) relapsed:
 - 4 salvaged by CSI, 1 died of disease progression
 - 5/28 received CT:
 - 2 (40%) relapsed, 3 others are recent cases:
 - 1 salvaged by CSI, 1 died of disease progression
 - 9/28 received CSI:
 - None relapsed
 - 1 died of radiation complications

Important Information Regarding CME/SAMs
The Online CME/Evaluations/SAMs claim process will only be available on the USCAP website until September 30, 2017.

GCTs and Indiana University
- Cis-platinum:
 - First member of platinum antitumor agents
 - Cross links DNA; triggers apoptosis
 - 1845: M. Peyrone (Peyrone salt)
GERM CELL TUMORS

GCTs and Indiana University

- Cis-platinum and GCTs:
 - 1974: Lawrence Einhorn
 - Phase II study
 - Patients with disseminated testicular GCTs
 - Cisplatin + etoposide + bleomycin
 - 74% complete remission
 - 26% partial remission
 - With postchemo surgery: 85% remission
 - Standard therapy
 - No phase III study conducted!