Spectrum of EBV+ B-Cell Lymphoproliferative Disorders

Yaso Natkunam, MD, PhD
Professor of Pathology
Stanford University School of Medicine

Outline

- Pathologic spectrum of EBV+ B-cell lymphoproliferative disorders
- Nomenclature for immunodeficiency disorders
- When to consider EBV testing and molecular clonality testing

Epstein-Barr Virus (HHV4)

- Discovered in 1964 from cultured Burkitt lymphoma cells from an Ugandan child
- EBV infected B-cells persist within the memory B-cell pool of most immunocompetent hosts
- EBV-encoded latent genes induce B-cell transformation by altering gene transcription and activating signaling pathways
- Immunosuppressed patients are at increased risk of developing EBV-associated B-cell lymphoproliferative disorders

Immunodeficiency Disorders

Hyperplasia
Polyclonal
Polyclonal
Monoclonal
Monoclonal
Lymphoma

EBV
B-cell lymphoproliferations

HHV8
HHV8-associated lymphoproliferations

T & NK-cell lymphoproliferations

Hyperplasias

 - Defined as mass forming lesions with preservation of overall tissue architecture (non-destructive)

- Three types
 1. **Follicular hyperplasia** (formally recognized in WHO 2016)
 2. Infectious mononucleosis-like hyperplasia
 3. Plasmacytic hyperplasia

EBV+ B-Cell Spectrum

- Patterns of reactive B-cell hyperplasia
 - B-LPD of varied malignant potential
 - Polymorphic B-LPD
 - Monoclonal B-LPD
 - Marginal zone lymphoma
 - Diffuse large B-cell lymphoma

Follicular Hyperplasia

- Presents with isolated or multifocal lymphadenopathy
- No interfollicular expansion
- Distribution of EBER+ cells variable, often confined to 1-2 follicles
- Occasional clonal IG or simple karyotypic abnormalities
 - *Do not over-react to clones!*
- Regress spontaneously in most cases
- Rare concurrent or subsequent EBV+ B-LPD, clonally related in some

Images: Drs. Babu, Ewalt, Tennerantu
Mishellard F et al. Hum Pathol 2007
Shapiro NL et al, J Pediatr Otorhinolaryngology 2003
Williamson RA et al, Otolaryngol Head Neck Surg 2001
Sevžič ZW et al, Hematol Oncol 2011;29:90

EBER
Hyperplasias

- Mass forming, non-destructive lesions with overlapping patterns
 - Intact architecture helpful to differentiate from polymorphic B-LPD
 - Clinical context important to separate from nonspecific causes
 - Difficult to recognize if EBV is negative
 - Small clones or abnormal karyotypes may be present
 - Majority regress spontaneously

Follicular
- Scant interfollicular proliferation

IM-like
- Numerous interfollicular immunoblasts
- Small to medium lymphoid cells
- Plasma cells - polytypic
- FH usually present

Plasmacytic
- Numerous interfollicular plasma cells
- Few scattered immunoblasts
- Plasma cells - polytypic
- FH usually present

Genetic Complexity

- Progressively increasing karyotypic abnormalities

Dasatinib-Related Hyperplasia

- Newer therapeutic agents expand spectrum of immunodeficiency-related hyperplasias

Polymorphic B-LPD

- Morphologically polymorphous lesions that efface architecture or cause destructive masses, but do not fulfill criteria for diagnosis as lymphoma
 - Exhibit full range of B-cell maturation
 - Variable number of B & T cells; T may predominate
 - Variable number of Hodgkin-like cells
 - CD45+ CD20/CD79A+ CD30+ CD15+/− PAX5+ OCT2+
 - Light chain restriction +/- or focal or biclonal
 - Clonal IG gene rearrangements in almost all cases
 - Simple karyotypic abnormalities may be present
 - Some regress with withdrawal of immunosuppression; others need more active management such as Rituximab or RCHOP

Genetic Complexity

- Progressively increasing karyotypic abnormalities

Dasatinib-Related Hyperplasia

- Newer therapeutic agents expand spectrum of immunodeficiency-related hyperplasias

Polymorphic B-LPD

- Morphologically polymorphous lesions that efface architecture or cause destructive masses, but do not fulfill criteria for diagnosis as lymphoma
 - Exhibit full range of B-cell maturation
 - Variable number of B & T cells; T may predominate
 - Variable number of Hodgkin-like cells
 - CD45+ CD20/CD79A+ CD30+ CD15+/− PAX5+ OCT2+
 - Light chain restriction +/- or focal or biclonal
 - Clonal IG gene rearrangements in almost all cases
 - Simple karyotypic abnormalities may be present
 - Some regress with withdrawal of immunosuppression; others need more active management such as Rituximab or RCHOP

Genetic Complexity

- Progressively increasing karyotypic abnormalities

Dasatinib-Related Hyperplasia

- Newer therapeutic agents expand spectrum of immunodeficiency-related hyperplasias

Polymorphic B-LPD

- Morphologically polymorphous lesions that efface architecture or cause destructive masses, but do not fulfill criteria for diagnosis as lymphoma
 - Exhibit full range of B-cell maturation
 - Variable number of B & T cells; T may predominate
 - Variable number of Hodgkin-like cells
 - CD45+ CD20/CD79A+ CD30+ CD15+/− PAX5+ OCT2+
 - Light chain restriction +/- or focal or biclonal
 - Clonal IG gene rearrangements in almost all cases
 - Simple karyotypic abnormalities may be present
 - Some regress with withdrawal of immunosuppression; others need more active management such as Rituximab or RCHOP

Genetic Complexity

- Progressively increasing karyotypic abnormalities
Polymorphic B-LPD in Iatrogenic/Autoimmune Setting

- Iatrogenic LPDs usually arise in patients treated with immunosuppressive regimens for autoimmune disease
- **Methotrexate** commonly implicated
- Contribution of underlying autoimmune disease versus drug regimen is difficult to quantify; may depend on greater disease severity
- Longitudinal study of 10,815 RA patients on anti-TNFα meta-analyses of 14 published reports
 - Conclusion: no statistically significant difference in lymphoma rate

Important to obtain clinical history/treatment regimens

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatoid Arthritis</td>
<td>Methotrexate</td>
</tr>
<tr>
<td></td>
<td>Steroids</td>
</tr>
<tr>
<td></td>
<td>Hydroxychloroquine</td>
</tr>
<tr>
<td></td>
<td>TNFα inhibitor</td>
</tr>
<tr>
<td>Aplastic Anemia</td>
<td>ATG</td>
</tr>
<tr>
<td></td>
<td>Methyprednisone</td>
</tr>
<tr>
<td></td>
<td>Cyclosporine</td>
</tr>
</tbody>
</table>

Polymorphic B-LPD

- 57M, HIV/AIDS
- Abnormal LFT with multiple liver lesions
- Architectural destruction, necrosis
- Polymorphic background with RS-like cells
- IHC suggestive of Hodgkin lymphoma
- Commenced HAART with resolution

Polymorphic B-LPD in Lung

- 41F, HIV+
- Multiple lung nodules
- HAART started after diagnosis with complete remission

Polymorphic B-LPD: Other Features

- RS-like cells and EBV+ cells associated with monocytoid clusters
 - Monocytoid B-cell clusters should be a trigger to test for EBER

May be associated with

- Angiodestructive growth
- Necrosis
- Hemophagocytic lymphohistiocytosis
Mucocutaneous Ulcer

- Isolated, sharply-circumscribed ulcer in oropharyngeal mucosa, skin or GI tract
- Polymorphous infiltrate with RS-like cells mimicking classical Hodgkin lymphoma
 - CD30+ EBER+ CD20+/ CD15-/ CD45+
 - Prominent rim of CD8+ T-cells at base of ulcer
- Self-limiting, indolent, IS withdrawal effective
 - Localized defect in immune surveillance?

Indolent EBV+ B-Cell Lymphomas

- Rarely reported in immunodeficiency settings
- Almost all plasmacytoid, most are MZL
 - EBV+ MZL designated as a PTLD in WHO 2016
 - Very few FL and CLL/SLL
 - Difficult to designate EBV-neg cases as immunodeficiency-related
 - IgA heavy chain predominant
 - CR with reduced IS +/- antiviral therapy, local excision, rituximab, or local radiation

EBV+ DLBCL of the Elderly

- Aggressive EBV+ monoclonal B-cell proliferation arising in patients >50y with no known immunodeficiency
- Provisional entity in WHO 2008
- Incidence increases with age
- Immune senescence leading to defective immune surveillance?
- Broader range of morphologies than usual DLBCL

“Large B-Cell Proliferations associated with Chronic Inflammation”

- Rare EBV+ clonal large B-cell proliferations arising in localized sites without mass lesions in immunocompetent patients
 - Overlap with Pyothorax-associated lymphoma
 - Associated fibrin or amorphous material adjacent to cavities
 - Clinically indolent; seldom disseminate
 - Resemble breast-implant assoc. ALCL
 - Localized alteration in host immune surveillance?
 - Using “Large B-cell lymphoma” name may cause overtreatment

EBV+ DLBCL of the Elderly

- Aggressive EBV+ monoclonal B-cell proliferation arising in patients >50y with no known immunodeficiency
- Provisional entity in WHO 2008
- Incidence increases with age
- Immune senescence leading to defective immune surveillance?
- Broader range of morphologies than usual DLBCL

Gibson et al, Hum Pathol 2009
Hoefler et al, Hum Pathol 2010
Hochholzer et al, Mod Pathol 2011
Kato et al Cancer Sci 2014
Ok et al, Blood 2012; Clin Cancer Res 2014
Gibson et al, Leuk Lym 2015
EBV+ Large B-Cell Proliferations

- A spectrum of morphologies and immunophenotypes

Immunophenotypic Spectrum

<table>
<thead>
<tr>
<th>DLBCL</th>
<th>TCRBCL/Hodgkin-like</th>
<th>CHL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centroblast/immunoblast-like</td>
<td>Hodgkin-like</td>
<td></td>
</tr>
<tr>
<td>Intact B-cell phenotype (CD20, CD79a, PAX5, OCT2, BOB1)</td>
<td>Deficient B-cell phenotype</td>
<td>Aberrant phenotype (CD15, granzyme B, perforin)</td>
</tr>
<tr>
<td>Sparse infiltrate</td>
<td>T-cell rich</td>
<td>Few eosinophils</td>
</tr>
</tbody>
</table>

EBV+ DLBCL of the Elderly

- Incidence 3-14%; rare in West
- DLBCL with non-GC immunophenotype
- GEP: constitutive activation of NF-kB, enriched for JAK/STAT-signaling, immune/inflammatory, cell cycle, metabolism genes

EBV+ DLBCL in the Young

- 46 DLBCL ≤ 45y
- Immunocompetent
- M:F = 3.6:1
- Histologic spectrum
- PDL1 expression indicative of a tolerogenic immune microenvironment
- Superior outcome of EBV+ DLBCL in the young compared to the elderly
 - CR 82%, AWD 10%, DOD 8%
 - 5 y OS of 89% vs 24.4% (p<.0001)
- Term ‘elderly’ no longer in WHO 2016
EBV+ DLBCL: Is Age relevant?

- 46 Caucasian EBV+ DLBCL
- Compared <50 vs >50
 - No difference in clinicopathologic, IHC or genetic features
 - No difference in gene expression profiles or miRNA profiles
 - No difference in clinical outcome
- Need validation in larger cohorts of patients

Challenges...

- Significant overlap of similar proliferations across different immunodeficiency settings
 - “Similar” lesions between immunodeficiency and immunocompetent patients and among different immunodeficiency states may not be biologically similar
 - Virus or immune status may not be causal (bystander)
- Spectrum of lymphoid proliferations, diagnostic criteria and terminology are reasonably well established for post-transplant setting, but not in other settings
 - Lack of unifying nomenclature
- Increasing use of novel immunomodulatory agents and precision in immune monitoring, increases the complexity of treatment decisions related to whether or how early to treat

Nomenclature for Immunodeficiency Disorders

- Current classification is organized by immunodeficiency settings

Proposed Unifying Nomenclature for Immunodeficiency Disorders

- 2015 SH Workshop Panel proposal
- Aims to provide a common framework for discussion and further study and is not intended as a new classification at this time

A name with 3 components

- **Lesion**: hyperplasia, polymorphic LPD, DLBCL, etc
- **Virus**: EBV, HHV8, other
- **Immunodeficiency setting**: PTLD, HIV, primary, iatrogenic, etc

Example

- Polymorphic B-lymphoproliferative disorder, EBV+, iatrogenic setting (methotrexate)
When to Test for EBV and Molecular Clonality

EBV testing
- Known or suspected immunodeficiency
- Clinical history and drug regimen
- When morphology is polymorphous or discordant
- Necrosis
- Hemophagocytic lymphohistiocytosis
- Monocytoid B-cell clusters
- EBV monitoring in PTLD setting

Clonality testing
- EBV can induce oligoclonal or clonal proliferations
- Results should be interpreted with caution and in the context of clinical and histologic findings

Role of EBV & PD1/PDL1 Pathway

- EBV LMP1 & LMP2 enhance transcriptional activity of PD1/PDL2 to create a tolerogenic microenvironment by inducing T-cell anergy and immune evasion

PD1/PD-L1 blockade
- Removes tumor cell resistance to cytotoxic T-cell mediated lysis
- Restores anti-tumor activity of CD4+ T-cells
- Offers a novel therapeutic option

Expressed in
- NSHL, MCHL
- PMBL
- TCR/LCL
- EBV+ DLBCL
- Plasmablastic lymphoma
- NK/T cell lymphoma
- HHV8+ PEL

Locking in
- DLBCL, NOS
- Burkitt
- Small B-cell lymphoma

Thank you!